is mentioned by
Thm* (P P) False | [prop_iff_contra] |
Thm* (A B) (B C) (A C) | [prop_iff_trans] |
Thm* B (A B & C) (A C) | [prop_and_iff] |
Thm* Tr:(TermProp), tr:Term, L:(TermProp). RepsTruth(L; Tr; tr) Prop | [RepsTruth_wf] |
Thm* P:(TermProp), qP:Term, L:(TermProp). ReflectsProp(P; qP; L) Prop | [ReflectsProp_wf] |
Thm* Tr,L:(TermProp). RespectsNot(Tr; L) Prop | [RespectsNot_wf] |
Thm* t:Term. s(t) reps t/s(t) | [s_reps] |
Thm* t:Term. s(t) reps t/(f(t)/q(f(t))) | [s2] |
Thm* t:Term. s(t) = SUBX(q(t); SUBX(q(f(t)); Q(q(f(t))))) | [s1] |
Thm* t:Term. s(t) Term | [s_wf] |
Thm* t:Term. f(t) Term | [f_wf] |
Thm* t,e:Term. NOT(t)/e = NOT(t/e) | [qnot_subx] |
Thm* t,r,t',r':Term. t reps t' & r reps r' SUBX(t; r) reps t'/r' | [qsubx_repst] |
Thm* t,r:Term. t/r Term | [subx_wf] |
Thm* t:Term. Q(q(t)) reps q(t) | [qup_up_repst] |
Thm* t:Term. closed(t) | [up_term_closed] |
Thm* t:Term. closed(t) Prop | [term_closed_wf] |
Thm* t:Term. q(t) reps t | [up_repst] |
Thm* t:Term. q(t) reps t Term | [up_reps] |
Thm* t,x:Term. (t reps x) Prop | [repst_wf] |
Thm* t,x:Term. (t reps x Term) Prop | [reps_wf2] |
Thm* t:(u Term), x:u. (t reps x u) Prop | [reps_wf] |
Thm* (A Term) Type | [termof_wf] |
Def RepsTruth(L; Tr; tr) == (S:Term. (t:Term. S reps t) L(tr/S)) & RespectsNot(Tr; L) & ReflectsProp(Tr; tr; Tr) | [RepsTruth] |
Def ReflectsProp(P; qP; Tr) == t,qt:Term. qt reps t {Tr(qP/qt) Tr(t)} | [ReflectsProp] |
Def RespectsNot(Tr; L) == t:Term. Tr(NOT(t)) L(t) & Tr(t) | [RespectsNot] |
Def closed(t) == s,v:Term. t[s/v] = t | [term_closed] |
In prior sections: core