Origin Definitions Sections NuprlLIB Doc

ElisTarskiPf_B
Nuprl Section: ElisTarskiPf_B - Eli Barzilay's formalization of Tarski's unrepresentability of Truth

Selected Objects
Introductionintroductory remarks
defterminx IN t == PRIMITIVE
deftermofA Term == {t:Term| t IN A }
THMtermof_wf(A Term) Type
defrepsx reps y t == x IN t & ref(x) = y t
THMreps_wft:(u Term), x:u. (t reps x u) Prop
defrepstx reps y == x reps y Term
THMreps_wf2t,x:Term. (t reps x Term) Prop
THMrepst_wft,x:Term. (t reps x) Prop
THMup_repst:Term. q(t) reps t Term
THMup_repstt:Term. q(t) reps t
defterm_closedclosed(t) == s,v:Term. t[s/v] = t
THMterm_closed_wft:Term. closed(t) Prop
THMup_term_closedt:Term. closed(t)
THMqup_up_repstt:Term. Q(q(t)) reps q(t)
defsubxt/e == t[e/X]
THMsubx_wft,r:Term. t/r Term
THMqsubx_repstt,r,t',r':Term. t reps t' & r reps r' SUBX(t; r) reps t'/r'
THMqnot_subxt,e:Term. NOT(t)/e = NOT(t/e)
defff(t) == SUBX(q(t); SUBX(X; Q(X)))
THMf_wft:Term. f(t) Term
defss(t) == f(t)/q(f(t))
THMs_wft:Term. s(t) Term
THMs1t:Term. s(t) = SUBX(q(t); SUBX(q(f(t)); Q(q(f(t)))))
THMs2t:Term. s(t) reps t/(f(t)/q(f(t)))
THMs_repst:Term. s(t) reps t/s(t)
defRespectsNotRespectsNot(Tr; L) == t:Term. Tr(NOT(t)) L(t) & Tr(t)
THMRespectsNot_wfTr,L:(TermProp). RespectsNot(Tr; L) Prop
defReflectsPropReflectsProp(P; qP; Tr) == t,qt:Term. qt reps t (Tr(qP/qt) Tr(t))
THMReflectsProp_wfP:(TermProp), qP:Term, L:(TermProp). ReflectsProp(P; qP; L) Prop
defRepsTruthRepsTruth(L; Tr; tr) == (S:Term. (t:Term. S reps t) L(tr/S)) & RespectsNot(Tr; L) & ReflectsProp(Tr; tr; Tr)
THMRepsTruth_wfTr:(TermProp), tr:Term, L:(TermProp). RepsTruth(L; Tr; tr) Prop
THMprop_and_iffB (A B & C) (A C)
THMprop_iff_trans(A B) (B C) (A C)
THMprop_iff_contra(P P) False
THMTarski(Tr:(TermProp), tr:Term, L:(TermProp). RepsTruth(L; Tr; tr))

Origin Definitions Sections NuprlLIB Doc