Origin Definitions Sections NuprlLIB Doc

ElisTarskiPf_A
Nuprl Section: ElisTarskiPf_A - Eli Barzilay's formalization of Tarski's unrepresentability of Truth

Selected Objects
Introductionintroductory remarks
defterminx t == PRIMITIVE
deftermofA Term == {t:Term| t A }
THMtermof_wf(A Term) Type
defrepsx = y == x t & x = y t
THMreps_wft:(u Term), x:u. (t = x) Prop
defrepstx = y == x = y
THMreps_wf2t,x:Term. (t = x) Prop
THMrepst_wft,x:Term. (t = x) Prop
THMup_repst:Term. t = t
THMup_repstt:Term. t = t
defterm_closedclosed(t) == s,v:Term. t[s/v] = t
THMterm_closed_wft:Term. closed(t) Prop
THMup_term_closedt:Term. closed(t)
THMqup_up_repstt:Term. UP(t) = t
defsubxSUBX(t; e) == t[e/X]
THMsubx_wft,r:Term. SUBX(t; r) Term
THMqsubx_repstt,r,t',r':Term. t = t' & r = r' SUBX(t; r) = SUBX(t'; r')
THMqnot_subxt,e:Term. SUBX(NOT(t); e) = NOT(SUBX(t; e))
defff(t) == SUBX(t; SUBX(X; UP(X)))
THMf_wft:Term. f(t) Term
defss(t) == SUBX(f(t); f(t))
THMs_wft:Term. s(t) Term
THMs1t:Term. s(t) = SUBX(t; SUBX(f(t); UP(f(t))))
THMs2t:Term. s(t) = SUBX(t; SUBX(f(t); f(t)))
THMs_repst:Term. s(t) = SUBX(t; s(t))
defRespectsNotRespectsNot(Tr; L) == t:Term. Tr(NOT(t)) L(t) & Tr(t)
THMRespectsNot_wfTr,L:(TermProp). RespectsNot(Tr; L) Prop
defReflectsPropReflectsProp(P; qP; Tr) == t,qt:Term. qt = t (Tr(SUBX(qP; qt)) Tr(t))
THMReflectsProp_wfP:(TermProp), qP:Term, L:(TermProp). ReflectsProp(P; qP; L) Prop
defRepsTruthRepsTruth(L; Tr; tr) == (S:Term. (t:Term. S = t) L(SUBX(tr; S))) & RespectsNot(Tr; L) & ReflectsProp(Tr; tr; Tr)
THMRepsTruth_wfTr:(TermProp), tr:Term, L:(TermProp). RepsTruth(L; Tr; tr) Prop
THMprop_and_iffB (A B & C) (A C)
THMprop_iff_trans(A B) (B C) (A C)
THMprop_iff_contra(P P) False
THMTarski(Tr:(TermProp), tr:Term, L:(TermProp). RepsTruth(L; Tr; tr))

Origin Definitions Sections NuprlLIB Doc