Introduction | introductory remarks | |
def | termin | x t == PRIMITIVE |
def | termof | A Term == {t:Term| t A } |
THM | termof_wf | (A Term) Type |
def | reps | x = y == x t & x = y t |
THM | reps_wf | t:(u Term), x:u. (t = x) Prop |
def | repst | x = y == x = y |
THM | reps_wf2 | t,x:Term. (t = x) Prop |
THM | repst_wf | t,x:Term. (t = x) Prop |
THM | up_reps | t:Term. t = t |
THM | up_repst | t:Term. t = t |
def | term_closed | closed(t) == s,v:Term. t[s/v] = t |
THM | term_closed_wf | t:Term. closed(t) Prop |
THM | up_term_closed | t:Term. closed(t) |
THM | qup_up_repst | t:Term. UP(t) = t |
def | subx | SUBX(t; e) == t[e/X] |
THM | subx_wf | t,r:Term. SUBX(t; r) Term |
THM | qsubx_repst | t,r,t',r':Term. t = t' & r = r' SUBX(t; r) = SUBX(t'; r') |
THM | qnot_subx | t,e:Term. SUBX(NOT(t); e) = NOT(SUBX(t; e)) |
def | f | f(t) == SUBX(t; SUBX(X; UP(X))) |
THM | f_wf | t:Term. f(t) Term |
def | s | s(t) == SUBX(f(t); f(t)) |
THM | s_wf | t:Term. s(t) Term |
THM | s1 | t:Term. s(t) = SUBX(t; SUBX(f(t); UP(f(t)))) |
THM | s2 | t:Term. s(t) = SUBX(t; SUBX(f(t); f(t))) |
THM | s_reps | t:Term. s(t) = SUBX(t; s(t)) |
def | RespectsNot | RespectsNot(Tr; L) == t:Term. Tr(NOT(t)) L(t) & Tr(t) |
THM | RespectsNot_wf | Tr,L:(TermProp). RespectsNot(Tr; L) Prop |
def | ReflectsProp | ReflectsProp(P; qP; Tr) == t,qt:Term. qt = t (Tr(SUBX(qP; qt)) Tr(t)) |
THM | ReflectsProp_wf | P:(TermProp), qP:Term, L:(TermProp). ReflectsProp(P; qP; L) Prop |
def | RepsTruth | RepsTruth(L; Tr; tr) == (S:Term. (t:Term. S = t) L(SUBX(tr; S))) & RespectsNot(Tr; L) & ReflectsProp(Tr; tr; Tr) |
THM | RepsTruth_wf | Tr:(TermProp), tr:Term, L:(TermProp). RepsTruth(L; Tr; tr) Prop |
THM | prop_and_iff | B (A B & C) (A C) |
THM | prop_iff_trans | (A B) (B C) (A C) |
THM | prop_iff_contra | (P P) False |
THM | Tarski | (Tr:(TermProp), tr:Term, L:(TermProp). RepsTruth(L; Tr; tr)) |