
The Scribble Reader
An Alternative to S-expressions for Textual Content

Eli Barzilay
Northeastern University

eli@barzilay.org

Abstract
For decades, S-expressions have been one of the fundamental ad-
vantages of languages in the Lisp family — a major factor in shap-
ing these languages as an ideal platform for symbolic computa-
tions, from macros and meta-programming to symbolic data ex-
change and much more. As convenient as this minimalist syntax
has proven to be, it is unfitting for dealing with textual content.
In this paper we describe the reader used by Scribble — the PLT
Scheme documentation system. The reader implements a syntax
that is easy to use, uniform, and it meshes well with the Scheme
philosophy. The syntax makes “here-strings” and string interpola-
tion easy, yet it is more powerful than a combination of the two.

1. Introduction
In Scheme, textual content comes in the form of plain old double-
quoted strings, with simple backslash escapes. Dealing with rich
textual content is possible, but highly inconvenient to the point
of making such kind of programing nearly impractical. Writing
a complete textual document in plain Scheme syntax is possibly
more difficult than implementing a symbolic interpreter in Fortran.
In contrast, practically all modern languages come with a variety
of tools that promote textual content: multiple kinds of string quo-
tations, “here-strings” (also called “here-documents”), and string
interpolation syntax. In this regard, Scheme is severely lagging be-
hind the times.

The convenience that comes with these tools is more than a
mere technicality; it is important for enabling textual computing
in much the same way that S-expressions, quotes, and quasiquotes
in Scheme enable symbolic computing. Neither of these facili-
ties is required, yet without them, textual manipulation and sym-
bolic programming becomes a hair-pulling experience. Being
limited to Scheme strings means that all text must be modified
by escaping double quotes and backslashes (a major hassle for
text that has Scheme code in it), and to mix text and code, we
need to split the text into separate strings, then recombine them
with string-append — making this quite similar in nature to
an implementation of meta-programming when all you have is
make-symbol and make-pair.

In PLT Scheme, we have designed a new concrete syntax to
address the problem of textual content. This is implemented as a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Scheme and Functional Programming August 22nd 2009, Cambridge, MA

reader macro that is used as part of the Scribble documentation
system[5]. The new syntax is similar in spirit to S-expressions,
and indeed it is both elegant and useful in a similar way. At the
conceptual level, the syntax builds on a similar uniformity to that
of S-expressions — the result is even more convenient and general
than popular textual facilities, specifically, both here-strings and
string interpolation are achieved in a nearly trivial way. The new
syntax has proven itself in a massive migration of thousands of
documentation pages from a messy LATEXbased system to Scribble,
extending it with much more text, and the result is higher quality
renderings, with much improved utility to end users.

An additional similarity with S-expressions is in the syntax’s
versatility and independent utility: the Scribble syntax is useful in
many textual contexts, going well beyond “a documentation lan-
guage”; parallel to the utility of S-expressions for many tasks that
revolve around symbolic computations and more. It is essentially
an alternative S-expression “skin” that can ease textual applications
at the concrete syntax level while keeping the usual Scheme flexi-
bility. As a matter of fact, this approach can be used to extend any
language, it is the conceptual approach and the use of S-expressions
that makes it particularly fitting for Scheme.

In short, the Scribble syntax, not only brings PLT Scheme up
to speed with respect to textual programming: it provides it with
the same edge that Scheme always had with respect to symbolic
programming.

The Scribble syntax was not made up in a vacuum; various
Scheme implementations have come up with a few solutions to
varying degrees of completeness. Indeed, PLT Scheme itself has
SCSH-style “here-strings”[10], two different preprocessor tools, a
PLaneT library for string interpolation, and all of these come in
addition to a decade-long sequence of various experiments with
syntaxes in trying to find a good solution.

Many Scheme implementations provide a readtable-like facility
for extending their concrete syntax, and can therefore implement
the Scribble extensions conveniently and achieve the same benefits.
Moreover, if adopted by more implementations, these benefits can
carry to the Scheme community as a whole.

2. Scribble Syntax by Example
In this section we present the Scribble syntax through a not-so-short
sequence of examples. As usual with readtable-based parsers, the
syntax is hooked onto a “reader macro” character, which makes it
an extension of the existing S-expression reader — and allowing
a natural mix of Scheme code in both S-expression and Scribble
syntax, as well as making the implementation relatively simple by
localizing the required extension rather than requiring a completely
new parser.



2.1 Basic @-Expressions
Scribble forms are often called @-expressions or @-forms because
they begin with a @ character. Embedded in Scheme code, a simple
@-expression can look as follows:

(define (greetings) @list{Hello, world!})

Following the @, the reader proceeds to read list as a Scheme
identifier, and any text that appears within the following curly
braces gets parsed as a sequence of Scheme strings, and finally the
identifier and the strings are wrapped in a list. We can use the fact
that this is an extension of the Scheme reader, and inspect how it
parses an @-form using quote1:

> ’(define (greetings) @list{Hello, world!})
(define (greetings) (list "Hello, world!"))

The @ character was chosen by counting the frequency of the
first character used for symbols in the complete PLT code-base,
and choosing the least frequent one. Another (unexpected) advan-
tage of @ is that it is illegal to start an identifier with it according
to the R6RS[11] standard. The Scheme reader is extended by in-
troducing @ as a “non-breaking” reader macro character, so less
code may be broken when switching to it (i.e., a @ inside an identi-
fier has no special meaning). In the rare case where @ is needed at
the beginning of a symbol, PLT Scheme’s escape conventions for
symbols (also used by several other implementations) can be used
— for example, \@foo and |@foo| are plain Scheme identifiers.
This is a direct benefit of using a readtable extension: these escapes
mean that the Scribble reader will never see these symbols.

Reading @-forms as plain S-expressions is crucial to the utility
of the Scribble syntax. It allows us to leave the meaning of these
expressions to the usual Scheme semantics — using any kind of
bindings: existing or imported, procedures or macros.

> @display{Hello, world!}
Hello, world!
> (define (greet str) (printf "Hello, ~a!\n" str))
> @greet{world}
Hello, world!

The textual content of an @-expression is nearly free-form text.
It can have newlines, double and single quotes, backslashes, etc.
The S-expression that it parses to will have a number of strings:
usually one string per line and one for each newline. The indenta-
tion of the whole form is ignored, but indentation inside the form is
preserved and is parsed as a separate string of spaces.

> ’@string-append{Backslashes escape quotes:
"x\"y"}

(string-append "Backslashes escape quotes:" "\n" "\"x\\\"y\"")
> ’@string-append{1. First

- sub
2. Second}

(string-append "1. First" "\n" " " "- sub" "\n" "2. Second")

This makes @-forms extremely convenient for common tasks where
text contains code snippets. In almost all case, the author only needs
to deal with forms (function applications, macros, or quoted lists)
that have multiple strings as a “textual body”.

> (define (show . strings)
(for-each display strings))

> @show{(define (show . strings)
(for-each display strings))}

(define (show . strings)
(for-each display strings))

The reason for separating the text into separate strings for newlines
and indentation is that in some cases it is useful to process the
text based on them. We also use syntax properties (a PLT Scheme

1 To try these examples in a DrScheme or MzScheme REPL, en-
able the Scribble reader with (require scribble/reader) and
(use-at-readtable).

feature) that contain additional information, making it possible to
know the precise original syntax. In some rather rare cases where
this is needed, this information can be used by macros2.

Several subtle yet important decisions are made here. Ignoring
the indentation of an @-forms makes it possible to preserve the
indentation structure of Scribble-extended Scheme code, a price-
less feature for Schemers. In fact, the “overly verbatim” nature of
Scheme strings and popular here-string syntaxes greatly reduces
their popularity, and indeed, they are mostly used only in toplevel
positions, and still, Schemers often prefer string-append to pre-
serve the textual layout of their code. The importance of preserving
this textual layout leads to another feature of the Scribble reader: a
newline that begins the textual body or one that ends it are ignored
if the body contains text. If the body contains no text, then it is
assumed that the newlines are all intentional.

> @list{
blah blah blah

}
("blah blah blah")
> @list{

}
("\n")
> @list{

blah

}
("\n" "blah" "\n")

This decision is a typical case that demonstrates an important prin-
ciple of the Scribble syntax design: it should be convenient and
natural to use for humans authors facing tasks that involve writing
text in code. This stands in contrast to plain Scheme strings, where
uniformity and terseness is strongly favored over convenience. (It is
also interesting to compare this with textual quotations in modern
languages.) Obviously, there is an important tradeoff here: unifor-
mity and terseness are important for any feature of a programming
language, even more so for its concrete syntax. As a result, design-
ing the Scribble syntax has been a tedious experience of finding the
golden line between uniformity and convenience3.

The issue of indentation demonstrate this tension in two addi-
tional decisions. First, the indentation of a whole @-form is ignored,
but what if after the opening brace there are some spaces and then
text? In this case, the assumption is that the spaces are intentional,
and they are not ignored. Second, when @-forms are used as markup
language, a textual body might be outdented relative to the first
line, to avoid disturbing the flow of text. A simple solution to both
of these issues is to simply ignore any text that follows the opening
brace when determining the indentation of the whole @-expression.

> @list{ One
Two}

(" One" "\n" " " "Two")
> @list{This sentence is split

across two lines.}
("This sentence is split" "\n" "across two lines.")

In a similar way to its treatment of indentation, Scribble ignores
spaces at the end of lines — except for spaces right before the
closing brace, if there is text on that line.

> @list{ One
Two }

(" One" "\n" " " "Two ")

2 A macro is required since the source and its properties do not exist at
runtime.
3 There are still a number of corner cases where it is not clear whether the
Scribble syntax has followed the right choice.



2.2 Escapes and “Here Strings”
Clearly, the textual content is not completely free form: it is ter-
minated by a closing brace. However, balanced braces are still al-
lowed. This greatly reduces the need for escaping — most uses of
a textual container that require braces will have balanced braces, so
we favor not requiring escapes for this case over the alternative of
always requiring them, or the asymmetric alternative of requiring
them only for closing braces.

> @list{int add1(int i) {
return i+1;

}}
("int add1(int i) {" "\n" " " "return i+1;" "\n" "}")

Typical cases that require an unbalanced single brace are programs
that construct text programmatically, and for such uses we can still
use conventional Scheme strings. In other words, we choose yet
again the option that has the greater advantage for most texts, over
the more uniform but less convenient alternatives.

Still, we wish for the syntax to be complete and to accommodate
an unbalanced brace in some way when it is needed. A good rule-
of-thumb to see how such a syntax scale is to observe how it handle
reflective texts, for example, writing texts about the system itself4.

A common sequence of events at this point is (a) decide to use
an escape character, (b) go with the familiar backslash, (c) require
backslashes to be escaped too, (d) end up with yet another level
of backslash-escapes. An alternative that we considered is back-
slashes that escape only braces, and otherwise are part of the text:
a sequence of n backslashes followed by a brace would stand for a
text that consists of n − 1 backslashes and the brace, for example
“\{” quotes “{”, and “\\\{” quotes “\\{”. This non-uniform rule
comes at a cost: it is confusing in its non-uniform behavior, and it
is impossible to have a backslash appear before an unescaped brace
(as the last character of a textual body). Regardless of the choice,
an escape character is a poor choice for reflective texts (failing our
rule-of-thumb), and was therefore rejected.

Instead of an escape mechanism, we have turned to a more con-
venient approach that fits cases that call for extra “freedom” in the
text part of an @-expression — a set of alternative delimiters can be
used, making braces lose their special role. Using a different shape
of parentheses, as done in some languages that have both single-
and double-quoted strings, only shifts the problem elsewhere, forc-
ing the author to be aware of the current delimiters. Instead, we
have settled on alternative delimiters that are longer than single
braces: we still use braces (so delimiters still look similar, making
them easy to read and to remember), but the open/close delimiters
we use |{ and }|.

> @list|{ }-{ }|
(" }-{ ")

The vertical bars are not an arbitrary choice: they have a similar
role in delimiting symbols in the PLT Scheme reader, so playing a
similar role here makes this choice more memorable.

Going back to our rule-of-thumb, it becomes apparent that just
a single alternative is insufficient, for example when this alterna-
tive is itself documented. The delimiter syntax is therefore further
generalized to arbitrary user-specified delimiters in a way that is
analogous to here-strings: the opening delimiter can have any se-
quence of punctuation characters (excluding curly braces) between
the vertical bar and the brace, making the expected closing delim-
iter to hold the same sequence (in reversed order, and with reversed
parentheses)5. Using such delimiters makes it possible to have the
text arbitrarily free-form.
4 For example, this paper and the Scribble documentation pages are both
written using the Scribble reader.
5 Alphanumeric characters are forbidden here to avoid mistakes; curly
braces are forbidden to avoid ambiguity; and the reason for reversing paren-

> @show|--<<{Use @foo|{...}| to type free braces}>>--|
Use @foo|{...}| to type free braces

For extreme cases, the Scribble reader is generalized on the
macro character to use. For example, the textual domain might use
@ excessively (e.g., documenting Scribble), or you might want to
intentionally make a syntax that looks like an existing language
(e.g., create a language that is close in its look to LATEX)6. Yet
even with our extensive experience of (re)writing the PLT Scheme
documentation in Scribble, there was no need for this feature. It is
therefore only available through procedures in the reader API that
can construct such custom readers.

Finally, the Scribble syntax has yet another way to locally es-
cape text using the usual Scheme string syntax. This is done by
following a @ with a Scheme string. This can be handy in some dif-
ficult cases, where it is used for very short strings, or when authors
prefer it over using the alternative delimiter syntax.

> @show{An open brace: #\@"{".}
An open brace: #\{.

As we shall see next, this is actually a limited (and slightly modi-
fied) example of nested Scribble forms.

2.3 Nested @-Forms
So far, the Scribble syntax that we have covered serves as only
a convenient alternative to quoting and to “here-strings”. Specifi-
cally, we did not address the problem of combining text and code,
commonly addressed via “string interpolation”. Schemers quickly
recognize string interpolation as similar in nature to quasi-quoting.
In fact, such a facility is sometimes named “quasi-strings”, and im-
plemented as a string-like extension using similar characters.

Our syntax implements a conceptually different solution — a
general approach that is powerful enough to support string inter-
polation as a trivial byproduct. At its core, the basic property of
the Scribble syntax is that @-forms have the same meaning whether
they appear in Scheme code or nested in other @-forms. The di-
rect implication of this principle is simple: if the textual body of an
@-expression has a nested expression, then the nested one is read
recursively, and the resulting expression contains the nested form
among the strings of its textual body, which means that the textual
body of an @-form is no longer just a sequence of strings.

> ’@foo{abc @bar{ijk}
xyz}

(foo "abc " (bar "ijk") "\n" "xyz")

This approach is the primary key to the convenience and flexi-
bility of the Scribble syntax. The first thing to note is a convenience
point: @-expressions preserve their meaning when they move into
and out of other @-expressions. But this is important at a much
more fundamental level: it means that @-expressions follow the
same rules as S-expressions — an occurrence of @foo{...} de-
notes an application of the procedure bound to foo (or a foo macro
form), regardless of where it appears in the code (barring quoted
contexts). This is what makes the Scribble syntax be an alternative
to S-expressions, one that is well suited for textual content — not
just a mere combination of string quotation and unquotation.

> (define mytext @list{A @vector{B} C})
> mytext
("A " #("B") " C")

If this is compared to a conventional string interpolation (using a
fictitious syntax),
theses is to make it more convenient to edit the text and making it fit well
inside the |{. . .}| delimiters
6 To experiment with this, the source of this paper uses a Scribble reader
customized to use a backslash, making the source mostly compatible with
LATEX.



(define mytext (list "A $(vector "B") C"))

several differences become apparent:

• In such mechanisms, the interpolated expressions are expected
to evaluate to a string, or are coerced to a string value, to
keep the value a string. In contrast, nested @-forms can be any
expression and have any kind value.

• This is an indication of a more important difference: in the
string interpolation example, there is no single interpolated
expression — only an interpolated value. To put this in rough
Scheme terms, to get an interpolated expression, we would need
to somehow “expand the string” into a sequence of expressions
that are spliced into the expression that contains the string —
and make sure that such strings always appear in expressions
that expect one or more string values. (This kind of expansion
requires a global transformation, or a kind of a macro expander
that can expand string literals and deals with transformers that
return a to-be-spliced value.)

• Finally, note that the vector expression needs to be escaped,
while the list expression must not be escaped. We therefore need
to be aware of the lexical surrounding of an expression to know
if it should be escaped or not — which can be difficult with
bigger pieces of code, and it therefore encourages restricting
interpolated expressions to relatively small bits. This is similar
in nature to quasi-quoting, where we have a “textual context”
for text, and we can escape out of it back to Scheme code.
This is in sharp contrast to Scribble expressions — which are an
extension of the language rather than just a new kind of context.

Going back to our reader, nested @-forms make perfect sense:
they can be conveniently used with any kind of code, and any kind
of context. We only need to make sure that every @-expression
that we use has a proper binding, and that these bindings expect
a variable number of “textual body” arguments, mostly strings. For
example, a simple adjustment to the previous definition of show
makes the following example work as expected:

> (define (show . text)
(let loop ([x text])

(if (list? x) (for-each loop x) (display x))))
> (define (greet str) (list "Hello, " str "!"))
> @show{Once again: @greet{world}}
Once again: Hello, world!

As the @ character turns into a special character in a textual
body, it is also subjected to the alternative delimiter syntax as the
open and end braces. Specifically, when |{. . .}| are used for a
textual body, then nested expressions should similarly begin with
a |@, and the same goes for the variants with extra punctuations in
the delimiter.

> @list|{123 @vector{456} 789}|
("123 @vector{456} 789")
> @list|{123 |@vector{456} 789}|
("123 " #("456") " 789")
> @show|{@greet{world} --> |@greet{world}}|
@greet{world} --> Hello, world!
> @show|--{@greet|{world}| --> |--@greet|{world}|}--|
@greet|{world}| --> Hello, world!

Note that the nested form determines its own variant of delimiters:
the greet expressions above do not have to use the alternative
delimiters.

At this point the Scribble syntax combines convenient facility
for quoting free-form text, with an extension that addresses the
same kind of problems as string interpolation devices. But it is not
a complete replacement for string interpolation — yet.

2.4 Expression Escapes, String Interpolation
With Scheme S-expressions, parenthesized expressions denote pro-
cedure applications (we ignore macros for now), with the head of
the expression denoting the procedure to apply. Of course, identi-
fiers can appear in places other than the head of a parenthesized
expression, making it a simple reference to a value. The Scrib-
ble syntax builds on S-expressions by reading an @-form as an S-
expression, where the identifier after the @ stands in the “head po-
sition” of the expression, and the following curly braces denote the
(textual body) arguments. It is therefore intuitive to make the Scrib-
ble syntax correspond to S-expressions: if @〈id〉 is not followed by
a curly-braced textual body, then the result of reading the form is
just 〈id〉.

> ’@foo{x @y z}
(foo "x " y " z")
> (define name "earth")
> @show{Using "@name": @greet{@name}}
Using "earth": Hello, earth!

Furthermore, there is no reason to restrict the head part of
an @-expression to identifiers only — it can just as well have
any S-expression. With a textual body, this is equivalent to an
application expression that has an application expression in the
function position.

> ’@(foo){bar}
((foo) "bar")
> @show{I repeat: @(compose greet string-upcase){@name}}
I repeat: Hello, EARTH!

Without a textual body, we get a generic escape for arbitrary
Scheme expressions.

> @show{I repeat: @(greet (string-upcase name))}
I repeat: Hello, EARTH!
> ’@show{1+2 = @(+ 1 2)}
(show "1+2 = " (+ 1 2))
> @show{1+2 = @(+ 1 2)}
1+2 = 3

An interesting result of making the syntax uniform via uses of
the Scheme reader is that the head part of an @-expression can itself
be an @-expression. With an input code of @@foo{bar}{baz},
the Scribble reader gets invoked by the first @, it will then read
the head part for the @-form which is @foo{bar} (resulting in
(foo "bar")), and finally it reads the textual body and constructs
the resulting expression, ((foo "bar") "baz"). In some cases,
this can be useful for procedures that expect more than a single
textual body: write the appropriate curried definition where each
step consumes a “textual body” as a rest argument, and to use it,
specify the right number of @s at the beginning of the @-form.

> (define ((features . pros) . cons)
@list{Pros: @|pros|.

Cons: @|cons|.})
> @show{@@features{good}{bad, ugly}}
Pros: good.
Cons: bad, ugly.

There is a small exception to such Scheme escapes: when the
escaped expression is a literal Scheme string, the string is combined
with the surrounding text rather than become a separate expression.
As discussed above, this allows using the same syntax for escaping
arbitrary text using familiar Scheme quotes.

> @list{1 @2 @"3" 4}
("1 " 2 " 3 4")

This is another case where Scribble favors utility over uniformity.
In general, @-forms are not used when precise control over the num-
ber of arguments is needed — instead, it is used with a sequence
of “textual body arguments”, with functions (or macros) where (f
"x" "yz"), (f "xy" "z"), (f "x" "y" "z"), and (f "xyz")
are all equivalent. Given this, the escaped string exception is both



harmless and redundant; however, it is useful in some cases where
a single string argument is expected, and in cases where it is impor-
tant that a chunk of text be kept as a single string (e.g., when each
string is later post-processed).

Using the Scribble reader’s expression escapes, we can now
get string interpolation as a relatively boring special case of using
@string-append{...} and @-expression escapes that evaluate to
plain strings. Combining this further with configurable delimiters,
we get the functionality of here-strings too.

> (define qs string-append) ; qs is for quasi-string
> @qs{... name=@name ...}
"... name=earth ..."
> @qs|{...} @name=|@name {...}|
"...} @name=earth {..."

Since the Scheme reader is used to read escaped expressions,
we need some way to separate identifiers from adjacent text that
will otherwise be read as part of the identifier, or from braces that
should not be part of the @-form. One solution that a few Scheme
implementations of a textual syntax choose is to avoid the prob-
lem: require using an escaped begin expression when delimiting
identifiers. In Scribble, we have avoided such solutions for a few
reasons: (1) it is inconvenient, especially when it breaks the tex-
tual flow with an otherwise redundant identifier; (2) a (begin id)
expression is not always equivalent to id (e.g., in a quoted list);
and (3) given the uniform Scribble syntax, it makes more sense to
have a way to avoid a following brace from becoming part of an
@-expression, rather than leave it to the less convenient escapes.

The Scribble solution for this is to use |...| delimiters. The
vertical bar character was chosen partly because it is also used by
the alternative delimiter syntax (so the motivation is to keep a small
set of “special” characters), and partly because in PLT Scheme,
|id| is read as the id identifier.

> @show{Hello, @name.}
reference to undefined identifier: name.
> @show{Hello, @|name|.}
Hello, earth.
> @show{Hello, @|name|{}.}
Hello, earth{}.

Note, however, that the two uses are different: if the vertical bars
were left for the Scheme reader, the above examples would not
have worked (the second would still read the period as part of the
identifier, and the third would still use the braces as the form’s
textual body). This is not a problem in practice: @-forms are for
human-authored texts, so unconventional identifiers are not used;
even if there is a case where such an identifier is needed, it is
possible to use backslash escapes as usual in the PLT reader.

2.5 Further Extensions
2.5.1 Scheme-Mode Arguments
While we have a convenient way for specifying textual @-forms
and Scheme S-expressions in both code and text contexts, there are
cases where it is convenient to have a form with both S-expression
subforms and a textual body. Such a mixture of the two kinds of
subforms is particularly useful in a documentation system, where
many typesetting procedures consume text (as a ‘rest’ argument) as
well as keyword arguments for various customization options, but
also for functions that expect a few non-text argument before the
textual body. Yet, using the Scribble syntax that we have seen so
far make this inconvenient and error prone.

> (define (shout #:level n . text)
(list text (make-list n "!")))

> @show{@shout{@|#:level|@|3|Greetings}}
Greetings!!!

The way that this is addressed in Scribble is by introducing another
part to @-forms where additional “Scheme-mode” arguments can
appear. This part is specified using square bracket delimiters.

> @show{@shout[#:level 3]{Greetings}}
Greetings!!!

The textual body part of an @-form is still optional — making
it is possible to specify only the Scheme-mode arguments with
no textual body at all. Such @-expressions are read as a simple
parenthesized list with the head followed by the arguments, making
it an alternative form for plain S-expressions.

> @list{@list[1 2 3] @(list 1 2 3)}
((1 2 3) " " (1 2 3))

This apparent redundancy is a by-product of making the Scribble
syntax uniform. While both of the @-expression and the escaped
S-expression read as exactly the same code, we use a convention
where the first form is for expressions that produce text, and the sec-
ond for other expressions. This makes more sense in places where
the default reader mode for a whole file is the Scribble reader’s
“text mode”, which is used, for example, in the PLT documentation
sources. In these files, a function like itemize that expects items
as arguments is written using the first form, while require and
define expressions are written using the second.

#lang scribble/manual
@(require some-module)
...text...
@itemize[@item{...text...}

@item{...text...}]
...text...

It is interesting to note that initially, we intended to use Scheme-
mode part of @-forms only for keyword arguments, and used
@itemize{...}, which means that the itemize function needs
to ignore all-whitespace string arguments (and throw an error for
other string arguments). Only later we ‘discovered’ that the square-
bracket form makes more sense.

2.5.2 Headless Expressions
The full syntax of an @-form is therefore an @, a Scheme-syntax
form head, a sequence of Scheme-syntax arguments in square
brackets, and a sequence of text-mode arguments delimited by
square braces. Only one of these is required — if only the head
is included, we get an expression escape; and if the head is not
included, then the Scribble reader will read it as a parenthesized
expression with only the Scheme-mode and/or textual-mode argu-
ments. This is mostly useful inside a Scheme quote:

> ’@{Hello,
world!}

("Hello," "\n" "world!")
> ’@{Hello @{world}!}
("Hello " ("world") "!")
> ‘@{Hello @|,name|!}
("Hello " "earth" "!")

2.5.3 Dealing with Scheme Punctuations
There is a minor problem that is related to Scheme quasiquotes.
Say that we want to have a quasiquoted list, and use unquoted @-
forms in this list. The @ character in ,@foo is going to be read as the
short notation for unquote-splicing — a problem that appears
in a few places in the PLT documentation sources7. An ugly hack
around this problem is to add a space after the comma.

> ‘(html ,@string-titlecase{hello world!})
unquote-splicing: expected argument of type 〈proper list〉; given #〈procedure:string-

titlecase〉
> ‘(html , @string-titlecase{hello world!})
(html "Hello World!")

7 This is similar to one reason that identifiers are not allowed to begin with
a @ in standard Scheme, as it makes ,@foo ambiguous.



A related problem occurs when we try to unquote @-forms: if we
follow the rules, we need ‘@{...@, @f{}...} — but Schemers
want their unquotes short and convenient (e.g., reader shorthands).

Scribble solves both problems by “pulling out” any of the short-
hand punctuations (’ ‘ , ,@ #’ #‘ #, #,@) outside of an @-form’s
head when they are found there, and wraps them around the whole
expression. This solves both problems conveniently:

> ‘(html @,string-titlecase{hello world!})
(html "Hello World!")
> ‘@html{... @,string-titlecase{hello world!} ...}
(html "... " "Hello World!" " ...")

2.5.4 Extending Scheme Escapes
Since we have a specific syntax for specifying Scheme expression
escapes (@|...|), it is natural to generalize it: instead of a single
Scheme expression, it can hold more expressions, or none at all.
When more than one expressions are used, they are all spliced into
the containing @-form.

> @list{foo @|(+ 1 2) (* 3 4)| bar}
("foo " 3 12 " bar")

Note that this means that it possible to use this for keyword argu-
ments, e.g., @para{@|#:style ’small|blah blah} — but this
is inconvenient: it is heavy on punctuation (therefore hard to re-
member and easy to mistakes), and it is unnatural in the sense that
the Scheme-mode part is nested inside the textual part. The square-
bracket syntax is vastly easier to remember and simpler to use.

A Scheme escape with no expressions serves a special purpose
as a “separator token” that can be used to split some text into two
strings. This is rarely used since, as mentioned above, Scribble
code tend to not rely on a particular separation of the textual-body
arguments. A slightly more useful use of zero-expression escapes
is forcing the reader to include an initial or a final newline, more
spaces at the beginning or at the end of a line.

> @list{
foo @|| bar
}

("foo " " bar")
> @list{@||

@|| foo @||
@||}

("\n" " foo " "\n")

2.5.5 Comments
Finally, the Scribble reader has syntax for #||#-like balanced com-
ments and ;-like line comments. Note that we cannot use Scheme
comments in escape expressions; it seems that an escape expres-
sion can be used with a balanced Scheme comment (making it an
empty escape expression): @|#|...|#|. Ignoring the hieroglyphic
look of this construct, the problem is that the commented portion
is a comment in Scheme syntax. For example, if the commented
part contains |#, then the comment will terminate prematurely.
A proper way to achieve balanced comments without an exten-
sion to the Scribble syntax is therefore even more hieroglyphic:
@|#;@{...}|. Line comments are impossible, since we will still
need to insert something on the following line.

A balanced comment in Scribble is written as @;{...}. The
body is still parsed in text-mode, so it can hold balanced braces,
and it can use the alternative delimiter syntax.

> @list{foo@;{commented
text}bar}

("foobar")
> @list{foo@;{...{}...}bar}
("foobar")
> @list{foo@;|{...}...}|bar}
("foobar")

A line comment starts with a @; (and followed by a character other
than ;), and it ends at the first non-whitespace character in the
following line. This kind of comment can be useful in the same
way as LATEXcomments.

> @list{Some text, @; a comment
more text.}

("Some text, more text.")

There is no syntax for an “expression comment”, because defining
an “expression” in a textual context is more difficult, and also
because we had no need for this so far.

3. Text-Mode Source Code
While the Scribble extension is extremely useful, there are cases
where we want to change our “perspective”. Instead of thinking
about source code as a Scheme file that contains some textual data,
we wish to view it as a text file that contains some embedded
Scheme code.

There are a number of applications where this shift in view is
desirable. The most obvious case in PLT Scheme, and in fact one
of the major motivations for the Scribble syntax, is the Scribble
documentation system itself. Files are written in one of the Scribble
languages (e.g., #lang scribble/manual), where all text in the
source (except for the #lang line itself) is read as strings by default,
and rendered as text in the target manual. The exception to this is
@-forms (including @ escape expressions) which are read as usual in
the Scribble syntax. For example, the source of the Scribble manual
starts with:

#lang scribble/manual
@(require scribble/bnf "utils.ss")
@title{@bold{Scribble}: PLT Documentation Tool}
@author["Matthew Flatt" "Eli Barzilay"]
Scribble is a collection of tools for creating prose
...

Unfortunately, implementing a reader for such languages cannot
be done with a readtable as it is no longer an extension of the
Scheme reader. Doing so will require overriding all characters
(including Unicode characters). But there is no need for a separate
reader implementation: at the conceptual level, the syntax of these
files is as if the source is all contained in the textual body part
of an @-form that surrounds the whole contents. This description
provides a concrete hint for implementing such a reader — the
only thing that we need is to invoke the part of the Scribble reader
that parses a textual body. Indeed, the Scribble reader’s API makes
its textual body parser available as an “inside” kind of reader
function, and this function can be used as a module reader (via the
#lang mechanism) to parse the source. When invoked this way,
the toplevel textual parser is only different in that it is expecting an
end-of-file to end the text, rather than a } closing delimiter.

The result of this inside reader has a different type from the
normal Scheme reader (read and read-syntax in PLT Scheme)
— instead of returning a single syntax value, it returns a list of
such values. Most items in this list are strings and the rest are @-
forms. The list then becomes the body expressions in the module
that is constructed by the #lang-specified language. The textual
languages then use a special macro that can easily change the se-
mantics of the module’s toplevel expressions — #%module-begin;
this macro is essentially wrapped around the module’s body, and
therefore it can rewrite these toplevel expressions.

3.1 Specific Use Cases
The “inside reader” feature is a powerful tool for creating textual
languages. In the PLT codebase, it is used in a few places in
addition to the documentation language. Each of these languages



#lang scribble/text
@(require scheme/list scheme/string)
@(define map/nl (compose add-newlines map))
@(define (itemize #:bullet [b "*"] . items)

(map/nl (lambda (item) @list{@b @item})
items))

@(define (pseudo-loop statements)
@list{begin

@; mix braces and begin/end: the joy of pseudo
while (true@;{use NIL for dramatic effect}) {

@(map/nl (lambda (s)
(let* ([s (string-append* s)]

[s (string-downcase s)]
[s (regexp-replace*

#px"\\s+" s "_")])
@list{@s();}))

statements)
}

end})
@(define (both . items)

@itemize[@list{In text:
@(apply itemize #:bullet "-" items)}

@list{And repeating in a pseudo-code:
@pseudo-loop[items]}

])
@(define summary

@list{If that’s not enough,
I don’t know what is.})

Todo:
@both[@list{Hack some}

@list{Hack more}
@list{Sleep some}
@list{Hack some

more}]
@summary

Todo:
* In text:

- Hack some
- Hack more
- Sleep some
- Hack some

more
* And repeating in a pseudo-code:

begin
while (true) {

hack_some();
hack_more();
sleep_some();
hack_some_more();

}
end

If that’s not enough,
I don’t know what is.

Figure 1. Preprocessor example

has a specific twist on the concept of text files with embedded
Scheme code.

• In the documentation languages, the (mostly textual) expres-
sions are all collected into an implicit global definition that is
made available for later rendering,

(define doc (list . . . textual-contents. . .))
(provide doc)

except for definition expressions and require declarations that
are kept at the top-level.

As usual, the contents of the doc definition expression is
made of strings and @-forms, which evaluate to a hierarchy of
structs that the documentation system uses to represent the text,
and the Scribble renderers can translate the resulting value to
HTML, LATEX, or text. The documentation languages come with
bindings for typesetting markup, facilities to do LATEX-like pro-
cessing (grouping parts, splitting to paragraphs, and shorthands
like ‘‘ and --). Additional libraries provide manual-specific
bindings (e.g., forms for documenting procedures and for pro-

ducing examples with automatic sandbox evaluation to show
the results of these examples); bindings for articles, and more.

• Another case where the textual file reader is used is the a pre-
processor language, #lang scribble/text. In this language
toplevel expressions are displayed one at a time on the standard
output, using a procedure that is similar to the show definition
in the above examples. In fact, this article is written using this
language, where the source can be programmable in Scheme,
an obvious improvement over the underlying LATEX. (In addi-
tion, the reader uses \ as the character for @-forms, making it a
hybrid language, where both LATEXand Scheme can be used to
define new commands.)

The actual procedure that displays the text has the added ca-
pability of handling indentation and more8, making it possible
to tackle difficult tasks where whitespace matters. For exam-
ple, this language is used as a preprocessor for the PLT foreign
interface, where it needs to gracefully handle oddities such as
the requirement that C preprocessor (CPP) directives start at the
beginning of a line.

(Note that our preprocessor cannot replace the C prepro-
cessor. This will require implementing C-specific functionality
such us finding include files, and knowing which CPP symbols
are defined by the local C compiler. In other words, CPP is not
just a preprocessor tool — it also serves as a an extension lan-
guage of the C compiler, and indeed it is implemented as part
of the compiler.)

The Scribble preprocessor language can also be used from
Scheme files (extended with the @-form syntax) — we use
this approach in the source code of the plt-scheme.org web
pages.

• In addition to these, the PLT web server implements template-
based servlets using this facility: a servlet “includes” a template
file using include/reader, which injects the textual content
into a lexical scope in the servlet — for example, one that binds
identifiers that are used in the template. The resulting language
is similar in nature to existing template systems like the Cheetah
template engine for Python[12] — where template files do not
even have a #lang line.

The Scribble system is still quite young, and we expect to have
additional uses for textual languages in the future, in addition to
using it in extended-Scheme-syntax files. For example, most uses
of the slideshow[3] language still use strings in the source code;
switching to @-expressions can make writing slides considerably
easier, and a textual language might further improve it. Also, we
consider implementing some form of a wiki, where @-forms (and
Scheme) are used as for convenient markup.

To get a rough feeling of how working with Scribble in a textual
language looks like, see Figure 1 (real code tend to have much more
textual content, of course).

4. Syntax Design, DSLs, and Why Macros are So
Great

Scribble is essentially the last version in a decade of various exper-
iments with different approaches to combining textual content and
Scheme code. Two older systems are still part of the PLT distri-
bution: mzpp is a template based preprocessor, which allows inter-
leaving of text and Scheme code in a conventional way; mztext is
a preprocessor that is similar in nature to TEX— when @ is found in
the input stream, a function name is read and applied on the stream,
allowing it to parse arbitrary amount of text in arbitrary ways (of-

8 This requires a PLT-specific feature: syntax values contain the position of
the expression in the source.



ten a {...} piece of text), and return a modified stream that can
contain new tokens.

Our experience of the development and implementation of the
Scribble syntax demonstrates that extending a language at the con-
crete syntax level is hard. The end result seems sensible now, but
the road that leads up to it is paved with subtle decisions. A few
examples:

• How do we deal with quoting delimiters? As discussed above,
there are several options with different trade-offs.

• Should we stick to the Syntax of scheme identifiers even though
it sometimes require extra quoting? Maybe change it to break
on periods, colons, etc?

• What is the best way to solve the possible problem with ,@?
• Even the seemingly minor issue of how whitespaces are handled

can be important. For example, if a space is either allowed or
forbidden before the braced textual body (either parsing @foo
{x} as a single @-expression or as foo followed by " x"),
we may run into confusing mistakes; which choice is more
consistent and/or natural? (The Scribble chooses the latter.)
Perhaps such occurrences should just lead to a read error?

• Another question is how should the concrete syntax translate
to S-expressions. An earlier implementation used a dispatch
form, with subforms for the head, the Scheme sub-expressions,
and the textual body. The idea was that it would be convenient to
have a central point of control for assigning meaning to Scribble
forms, by importing or defining dispatch — but this did not
work out well. Having a central point was not useful (the only
dispatch definition that was used expanded to an application
form), and is better left for the underlying language (in this case,
to Scheme macros and/or PLT’s #%app form); meanwhile, the
dispatch symbol would show up in quoted forms, making a
common Scheme idiom (quoting and quasiquoting) less useful.

This particular issue has lead to the “principle of least sur-
prise”, and a decision that the Scribble reader should not inject
any new identifiers into the input that were not originally there.
In a sense, this is the same confusion Scheme newbies run into
with the quote character shorthand, e.g., (define ’x 4).

There is an important lesson about (Scheme) macros and lan-
guage design here. If the only tool you have to extend your lan-
guage is a concrete syntax extension, then the difficulty involved
in that considerably raises the bar for implementing such exten-
sions, and at the same time extension code is more fragile. At the
S-expression level, Scheme gets a clear win by separating the con-
crete level parser from syntactic extensions, which means that there
is only one place to worry about the concrete syntax. Similarly,
adding hygiene continues this trend of going higher than the con-
crete text of the code, as lexical scope is also separated into an
independent lower level.

Considering concrete syntax in this light, the utility of @-
expressions seems even greater. We get to keep the advantage of
a separate layer to do the concrete parsing, while making more
“text-oriented” information available at the higher level (i.e., in
user code). With this, the Scribble reader helps in providing an
additional bridge to the textual level of the source code. But this
should not come as a surprise, as strings have always been this
kind of flexible data containers. (Perhaps too flexible, as seen in
languages like Perl and TCL where strings are used for arbitrary
semi-structured data, similarly to S-expression abuse in Scheme
and Lisp.)

This additional utility of @-expressions can be demonstrated
by a simple use of here-strings, to specify code in a DSL. For
example, a Scheme interface to generate equation images specifies
shell commands in one string, and the LATEXequation in another
string.

(define commands
@string-append{

pdflatex x.tex
convert -density 96x96 x.pdf -trim +repage x.png})

(define (latex . body) ...)
...
@latex{\sum_{i=0}^{\infty}\lambda_i}

An obvious extension to this use is to add interpolation with escape
expressions. Taking it further, we can gradually choose textual
constructs to abstract over in the foreign syntax using Scheme
functions to generate thos syntax, while keeping the text-friendly
property of our source code. For example, the preprocessed C code
of our foreign interface has a cdefine function

@cdefine[ffi-lib 1 2]{
...C code...

}

that generates the boilerplate C function header, adds a CPP
#define before the function for error messages and an #undef
after it, and finally registers the function’s name and arity to be
used later in the C initialization code to create the proper binding.

5. PLT Specifics
Generally speaking, the Scribble reader does not require any fea-
tures specific to PLT Scheme. In fact, we hope that other imple-
mentors will consider doing so, which will provide their implemen-
tations with the same benefits, as well as benefit the whole Scheme
community.

There are, however, a number of specific PLT features that are
worth mentioning in this context.

• The syntax objects that are used in PLT Scheme contain source
location information. Making the Scribble reader use and record
locations is an important feature: parsing errors are properly
reported and easy to find, and even in the case of syntax errors
and runtime errors, we know where the error is (e.g., with
highlights in DrScheme) without resorting to dumping the S-
expression that were read for manual inspection. In other words,
it makes the Scribble syntax be a real part of the language,
rather than a loose add-on.

• The Scribble reader records information about the original form
in the parsed syntax values using syntax properties. For ex-
ample, we can distinguish syntax that was written as an S-
expression from one that was written as an @-expression, and
we can tell which of its subforms were specified as part of a tex-
tual body. This feature can be useful in some rare cases where
we want the choice of concrete form to affect the meaning of
the code.

• The implementation of keyword arguments in PLT Scheme[4]
allows keywords to come before other arguments, which is
convenient for use in textual forms, where the customization
options are better kept next to the function name. This is not
specific to the Scribble syntax — it fits well with any similar
markup language (e.g., XML attributes).

• In PLT, a #lang line at the top of a file is used to specify the
language for the file. This specification works by choosing a
reader that will wrap the code in a module form, which is how
both the syntax and the semantics of the language are deter-
mined. As mentioned above, there are several languages that
use the “inside reader” — for example, Scribble documenta-
tion files start with #lang scribble/manual and preproces-
sor files start with #lang scribble/text. In addition, there
is a ‘special’ at-exp language that is used as a prefix for other
languages, for example: #lang at-exp scheme. The at-exp
language will delegate to the scheme reader, but will mix-in



the Scribble @-expression reader as an extension. This makes
it easy to enrich your language with @-forms. In both case, the
main benefit of #lang is localizing the reader to a single file,
making it possible to use different concrete syntaxes for differ-
ent source files, without a damaging global effect.

• Some of the special syntax identifiers that are used in PLT
Scheme – like #%app and #%module-begin – can be used to
create customized languages like the preprocessor language,
where the result of evaluating a toplevel expression is printed
using the preprocessor printer, or the documentation language
where they are collected into a definition.

Again, missing these features does not prevent implementing
the Scribble reader and getting its benefits. These are features that
are generally useful, and enhance the utility of the reader in various
ways — not having them means that the respective benefit is lost,
but nothing else.

6. Alternative Approaches and Related Work
There are numerous approaches to representing textual content in
code — and more than a few have been used by Schemers.

• Many Schemers still use plain Scheme syntax. Some attempts
at making things a little better include quasiquoting, and the
simple idea of using no spaces around double quotes, which
can be seen as a very limited form of interpolation.

(string-append "Today is "(date)".")

There are also uses of multi-line Scheme strings, yet it seems
that these are disliked enough to be rather rare.

• SCSH[10] was the first implementation to popularize here
strings, with a syntax that was adopted by several implementa-
tions, including PLT Scheme

#<<END
...
END

• The Skribe[6] documentation system has greatly influenced the
design of Scribble, though not at the concrete syntax level.
Skribe has a simple string interpolation facility, where square
brackets delimit a string, and a ,( starts a Scheme expression
escape, requiring all such escapes to be parenthesized expres-
sions. Other implementations have a similar functionality, for
example, Gauche[8] and JScheme[1] have a built-in facility, and
other implementations (PLT included) have add-on libraries.
Implementations are mostly simple readtable-based extensions,
which usually expand to a string-append expression. How-
ever, there is no consensus for either the syntax or the details
(e.g., whether any value can be used in an expression escape or
just strings).

• BRL (“Beautiful Report Language”[9]) and later Kawa[2], use
the textual template approach: a source file is parsed as text by
default, with Scheme code in square brackets. An interesting
aspect of the BRL syntax is that in Scheme code, reversed
square brackets delimit strings, which makes it possible to view
brackets as marks around Scheme code which is possible not
continuous. For example:

Are we there yet?
[(if (< (time) eta) ]no[ ]yes![)]

This approach is based on several server-side page generation
systems like PHP, JSP, and ASP.

• Finally, we have mentioned a few precursors to the current
Scribble syntax, two of which (mzpp and mztext) are still in-
clude in the PLT preprocessor collection. Several other experi-
ments were never made public, including an early template im-

plementation where escapes could be nested in a way that is
similar to Kawa, except that expression escapes can nest, form-
ing a tower of interpreters, and in addition each level can run a
different language. This was an example of a powerful system
that was not useful at all for practical purposes.

7. Conclusion
In PLT Scheme, the Scribble reader has proven itself as a valuable
tool. It is more powerful than similar facilities in modern languages,
and at the same time it is a relatively simple and uniform syntax,
which is critical to its acceptance. The reader plays a major role in
the success of our documentation system: in our content migration
from LATEXto Scheme, and in adding significant amounts of text —
we now have thousands of pages, and the quality of the documenta-
tion is much higher than it ever was before. It was also successful in
creating a better preprocessor tool, and a template-based generation
in our web server. The design process has been long and difficult;
getting the advantages of string syntaxes in modern languages, do-
ing so in a framework that fits well with the Scheme midset, and
improving on it, are all factors that make this a real challenge.

Any Scheme implementation can gain the same benefits, and in
fact, the Ikarus implementation[7] has been recently extended with
the Scribble syntax. We hope that additional implementations will
follow, leading to an even greater value of the syntax. Scribble is
easy to try out in PLT, and it is even possible to use PLT to “manu-
ally expand” code with Scribble syntax to plain S-expressions (by
simply using read on source files), so users of other implemen-
tations can try out the syntax using MzScheme as a preprocessor
before implementing it.

References
[1] Ken Anderson, Tim Hickey, and Peter Norvig. JScheme.

http://www.norvig.com/jscheme.html.
[2] Per Bothner. The Kawa language framework.

http://www.gnu.org/software/kawa/.
[3] Robert Bruce Findler and Matthew Flatt. Slideshow: Functional

presentations. In ACM SIGPLAN International Conference on
Functional Programming, pages 224–235, 2004.

[4] Matthew Flatt and Eli Barzilay. Keyword and optional arguments in
PLT Scheme. In Proceedings of the Tenth Workshop on Scheme and
Functional Programming, 2009.

[5] Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble:
Closing the book on ad hoc documentation tools. In ACM SIGPLAN
International Conference on Functional Programming, 2009.

[6] Erick Gallesio and Manuel Serrano. Skribe: a functional authoring
language. Journal of Functional Programming, 15(5):751–770, 2005.

[7] Abdulaziz Ghuloum. Ikarus Scheme.
http://ikarus-scheme.org/.

[8] Shiro Kawai. Gauche.
http://practical-scheme.net/gauche/.

[9] Bruce R. Lewis. BRL: the beautiful report language.
http://brl.sourceforge.net/.

[10] Olin Shivers. A Scheme shell. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1994.

[11] Michael Sperber (Ed.). The revised6 report on the algorithmic
language Scheme, 2007.

[12] Cheetah, the python powered template engine.
http://www.cheetahtemplate.org/.


	Introduction
	Scribble Syntax by Example
	Basic @-Expressions
	Escapes and ``Here Strings''
	Nested @-Forms
	Expression Escapes, String Interpolation
	Further Extensions
	Scheme-Mode Arguments
	Headless Expressions
	Dealing with Scheme Punctuations
	Extending Scheme Escapes
	Comments


	Text-Mode Source Code
	Specific Use Cases

	Syntax Design, DSLs, and Why Macros are So Great
	PLT Specifics
	Alternative Approaches and Related Work
	Conclusion

