
Keyword and Optional Arguments in PLT Scheme

Matthew Flatt
University of Utah and PLT

mflatt@cs.utah.edu

Eli Barzilay
Northeastern University and PLT

eli@ccs.neu.edu

Abstract
The lambda and procedure-application forms in PLT Scheme sup-
port arguments that are tagged with keywords, instead of identified
by position, as well as optional arguments with default values. Un-
like previous keyword-argument systems for Scheme, a keyword
is not self-quoting as an expression, and keyword arguments use
a different calling convention than non-keyword arguments. Con-
sequently, a keyword serves more reliably (e.g., in terms of error
reporting) as a lightweight syntactic delimiter on procedure argu-
ments. Our design requires no changes to the PLT Scheme core
compiler, because lambda and application forms that support key-
words are implemented by macros over conventional core forms
that lack keyword support.

1. Using Keyword and Optional Arguments
A rich programming language offers many ways to abstract and
parameterize code. In Scheme, first-class procedures are the pri-
mary means of abstraction, and procedures are unquestionably the
right vehicle for parameterizing code with respect to a few run-time
values. For parameterization over larger sets of values, however,
Scheme procedures quickly become inconvenient.

Keyword and optional arguments support tasks that need more
arguments than fit comfortably into procedures, but where radia-
cally different forms—such as unit or class in PLT Scheme—
are too heavyweight conceptually and notationally. At the same
time, keyword and optional arguments offer a smooth extension
path for existing procedure-based APIs. Keyword arguments can
be added to a procedure to extend its functionality without bind-
ing a new identifier (which always carries the danger of colliding
with other bindings) and in a way that composes with other such
extensions.

Keyword arguments in PLT Scheme are supported through a
straightforward extension of the lambda, define, and applica-
tion forms. Lexically, a keyword starts with #: and continues in the
same way as an identifier; for example, #:color is a keyword.1

A keyword is associated with a formal or actual argument by
placing the keyword before the argument name or expression. For
example, a rectangle procedure that accepts two by-position
arguments and one argument with the #:color keyword can be
written as

1 See Section 7.7 for a discussion on this choice of keyword syntax.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
2009 Workshop on Scheme and Functional Programming

(define rectangle
(lambda (width height #:color color)

....))

or
(define (rectangle width height #:color color)

....)

This rectangle procedure could be called as
(rectangle 10 20 #:color "blue")

A keyword argument can be in any position relative to other argu-
ments, so the following two calls are equivalent to the preceding
one:

(rectangle #:color "blue" 10 20)
(rectangle 10 #:color "blue" 20)

The #:color formal argument could have been in any position
among the arguments in the definition of rectangle, as well. In
general, keyword arguments are designed to look the same in both
the declaration and application of a procedure.

In a procedure declaration, a formal argument can be paired
with a default-value expression using a set of parentheses—or,
by convention, square brackets. The notation for a default-value
expression is the same whether the argument is by-position or by-
keyword. For example, a rectangle’s height might default to its
width and its color default to pink:

(define (rectangle width
[height width]
#:color [color "pink"])

....)

This revised rectangle procedure could be called in any of the
following ways:

(rectangle 10)
(rectangle 10 20)
(rectangle 10 20 #:color "blue")
(rectangle 10 #:color "blue")
(rectangle #:color "blue" 10 20)
(rectangle #:color "blue" 10)
(rectangle 10 #:color "blue" 20)

Our goals in a design for keyword and optional arguments
include providing especially clear error messages and enforcing a
consistent syntax for keyword arguments. Toward these goals, two
aspects of our design set it apart from previous approaches in Lisp
and Scheme:

• Keywords are distinct from symbols, and they are not self-
quoting as expressions.

For example, the form
#:color

in an expression position is a syntax error, while
(rectangle #:color "blue")

1

is a call to rectangle with the #:color argument "blue".
In the latter case, the procedure-application form treats the
#:color keyword as an argument tag, and not as an expres-
sion. Every keyword in an application must be followed by a
value expression, so the form

(rectangle #:color #:filled? #f)

is rejected as a syntax error, because #:color lacks an ar-
gument expression; if keywords could be expressions, the call
would be ambiguous, because #:filled? might be intended
as the #:color argument to rectangle.

• Keywords are not passed as normal arguments to arbitrary pro-
cedures, where they might be confused with regular procedure
arguments. Instead, a different calling convention is used for
keyword arguments.

For example,
(cons #:color "blue")

does not create a pair whose first element is a keyword and
second element is a string. Evaluating this expression instead
reports a run-time error that cons does not expect keyword
arguments.

Although a keyword is not self-quoting as an expression, a
keyword is a first-class value in PLT Scheme. A keyword can be
quoted to produce a valid expression, as in ’#:color and (cons
’#:color "blue"), where the latter creates a pair whose first
element is a keyword. Keyword values and quoted-keyword expres-
sions are useful for creating a procedure that accepts arbitrary key-
word arguments and processes them explicitly. Keyword values are
also useful in reflective operations that inspect the keyword require-
ments of a procedure. By convention, PLT Scheme programmers
do not use keywords for run-time enumerations and flags, leaving
those roles to symbols and reserving keywords for syntactic roles.

The rest of the paper proceeds as follows. Section 2 describes
the syntax and semantics of keyword and optional arguments in
PLT Scheme. Section 4 describes our implementation of keyword
arguments. Section 5 provides some information on the perfor-
mance of keyword and optional arguments. Section 6 reports on
our experience using keywords in PLT Scheme. Section 7 describes
previous designs for keywords in Lisp and Scheme and relates them
to our design.

2. Syntax and Semantics
Figure 1 shows the full syntax of PLT Scheme’s lambda. In a
〈kw-formals〉, all 〈id〉s must be distinct, including 〈rest-id〉, and
all 〈keyword〉s must be distinct. A required non-keyword argument
(i.e., the first case of 〈formal-arg〉) must not follow an optional non-
keyword argument (i.e., the second case of 〈formal-arg〉).

A lambda form that is constructed using only the 〈id〉 form of
〈fomal-arg〉 has the same meaning as in standard Scheme (Sperber
2007). A lambda form that uses only the 〈id〉 and [〈id〉 〈default-
expr〉] forms of 〈formal-arg〉 can be converted to an equivalent
case-lambda form; the appendix shows the conversion pre-
cisely in terms of syntax-rules. For each optional argument
that is not supplied in an application of the procedure, the corre-
sponding 〈default-expr〉 is evaluated just before the procedure body
is evaluated. The environment of each 〈default-expr〉 includes the
preceding arguments, and if multiple 〈default-expr〉s are evaluated,
then they are evaluated in the order that they are declared. When
a “rest argument” is declared after optional arguments, arguments
in an application are first consumed by the optional-argument po-
sitions, so the rest argument is non-empty only when more argu-
ments are provided that the total number of required and optional
arguments.

(lambda 〈kw-formals〉 〈body〉 ...+)

〈kw-formals〉 = (〈formal-arg〉 ...)
| (〈formal-arg〉 ...+ . 〈rest-id〉)
| 〈rest-id〉

〈formal-arg〉 = 〈id〉
| [〈id〉 〈default-expr〉]
| 〈keyword〉 〈id〉
| 〈keyword〉 [〈id〉 〈default-expr〉]

... means “zero or more,” ...+ means “one or more,” 〈id〉 or 〈rest-id〉
matches an identifier, 〈expr〉 or 〈default-expr〉 matches an expression,
〈keyword〉 matches a keyword, and 〈body〉 matches a definition or
expression in an internal-definition context

Figure 1: Extended grammar for lambda

(〈proc-expr〉 〈actual-arg〉 ...+)
〈actual-arg〉 = 〈expr〉

| 〈keyword〉 〈expr〉

Figure 2: Extended grammar for procedure application

> (define polygon
(lambda (n [side-len (/ 12 n)] . options)

(list n side-len options)))
> (polygon)
procedure polygon: no clause matching 0 arguments
> (polygon 3)
(3 4 ())
> (polygon 3 7)
(3 7 ())
> (polygon 3 7 ’solid ’smooth)
(3 7 (solid smooth))

When the 〈keyword〉 〈id〉 or 〈keyword〉 [〈id〉 〈default-expr〉]
forms of 〈formal-arg〉 are used to construct a lambda expres-
sion, the resulting procedure accepts keyword-tagged arguments
in addition to the arguments that would be accepted without the
keyword-tagged arguments. Arguments using the 〈keyword〉 〈id〉
form are required, while arguments using the 〈keyword〉 [〈id〉
〈default-expr〉] form are optional. As with the keywordless [〈id〉
〈default-expr〉] form, each keyword-tagged 〈default-expr〉 is eval-
uated for a given application of the procedure if no actual argument
is tagged with the corresponding 〈keyword〉, and the preceding ar-
gument 〈id〉s are in the environment of each 〈default-expr〉. When
〈default-expr〉s are evaluated for multiple arguments, they are eval-
uated in the order declared in the lambda expression, independent
of whether the arguments have a keyword tag or the order of key-
word tags on actual arguments. Actual arguments that are tagged
with a keyword can be supplied in any order with respect to each
other and with respect to by-position arguments.

> (define polygon
(lambda (n [side-len (/ 12 n)]

#:color [color "blue"]
#:rotate theta
. options)

(list n side-len color theta options)))
> (polygon 4)
polygon: requires an argument with keyword #:rotate, not
supplied; arguments were: 4
> (polygon 4 #:rotate 0)
(4 3 "blue" 0 ())
> (polygon 4 7 #:rotate 0 #:color "red" ’solid)
(4 7 "red" 0 (solid))

2

The above examples use the extended syntax of procedure ap-
plications shown in Figure 2, which allows arguments tagged with
keywords. Each 〈keyword〉 in an application must be distinct. Cru-
cially, the grammar of 〈expr〉 in PLT Scheme (not shown here) does
not include an unquoted 〈keyword〉, so the grammar for procedure
application is unambiguous.

Naturally, the result of 〈proc-expr〉 in an application must be a
procedure. For each keywordless argument 〈expr〉, the result is de-
livered to the procedure as a by-position argument, while each other
〈expr〉 is provided with the associated 〈keyword〉. PLT Scheme al-
ways evaluates the sub-expressions of a procedure application left-
to-right, independent of whether the argument is tagged with a key-
word. If the applied procedure evaluates 〈default-expr〉s for unsup-
plied arguments, it does so only after all of the 〈expr〉s in the proce-
dure application are evaluated. Similarly, the expected and supplied
arguments (in terms of arity and keywords) are checked after all
of the argument 〈expr〉s are evaluated but before the any 〈default-
expr〉s would be evaluated (so no 〈default-expr〉s are evaluated if
the number of supplied by-position arguments is wrong, if a re-
quired keyword argument is missing, or if an unexpected keyword
is supplied).

The define shorthand for procedure is extended in the obvi-
ous way to support keyword and optional arguments. PLT Scheme
also supports the MIT curried-function shorthand, which composes
seamlessly with keyword and optional arguments.

> (define ((rect w [h w] #:color [c "pink"])
canvas x y)

(set-pen-color! canvas c)
(draw-rectangle! canvas x y w h))

> ((rect 10 #:color "blue") screen 0 0)

In addition to the lambda, define, and application syntac-
tic forms, our design extends and adds a few procedures. An ex-
tended apply procedure accepts arbitrary keyword arguments,
and it propagates them to the given procedure.

> (apply polygon 4 7 #:rotate 0 ’(solid smooth))
(4 7 "blue" 0 (solid smooth))

Keyword arguments to apply are analogous to arguments between
the procedure and list argument in the standard apply; that is,
they are propagated directly as provided. The keyword-apply
procedure generalizes apply to accept a list of keywords and a
parallel list of values, which are analogous to the last argument of
apply.

> (keyword-apply polygon
’(#:color #:rotate)
’("blue" 0)
4 7
’(solid smooth))

(4 7 "blue" 0 (solid smooth))

The list of keywords supplied to keyword-apply must be sorted
alphabetically, for reasons explained in Section 4.

The make-keyword-procedure procedure constructs a
procedure like apply that accepts arbitrary keyword arguments.
The argument to make-keyword-procedure is a procedure
that accepts a list of keywords for supplied arguments, a parallel
list of values for the supplied keywords, and then any number of
by-position arguments.

> (define trace-call
(make-keyword-procedure

(lambda (kws kw-vals proc . args)
(printf ">>∼s ∼s ∼s<<\n" kws kw-vals args)
(keyword-apply proc kws kw-vals args))))

> (trace-call polygon 6 #:rotate 0)
>>(#:rotate) (0) (6)<<
(6 2 "blue" 0 ())

Finally, the reflection operations procedure-arity and
procedure-reduce-arity in PLT Scheme inspect or restrict
the arity of a procedure. The additional procedures procedure-
keywords and procedure-reduce-keyword-arity ex-
tend the set of reflection operators to support keywords. The
procedure-keywords procedure reports the keywords that
are required and allowed by a given procedure. The procedure-
reduce-keyword-arity procedure converts a given proce-
dure with optional keyword arguments to one that allows fewer of
the optional arguments and/or makes some of them required. A typ-
ical use of procedure-reduce-keyword-arity adjusts the
result of make-keyword-procedure (for which all keywords
are optional) to give it a more specific interface.

PLT Scheme does not extend case-lambda to support key-
word or optional arguments; the extension would be straightfor-
ward, but there has been no demand. Similarly, continuations in
PLT Scheme do not support keyword arguments. Extended vari-
ants of call-with-values, values, and call/cc proce-
dures could support keyword results and continuations that ac-
cept keyword arguments. We have not tried that generalization, but
an implementation could use continuation marks (Clements and
Felleisen 2004) that are installed by call-with-values and
used by values and call/cc to connect a keyword-accepting
continuation with its application or capture.

3. Keywords in Other Syntactic Forms
The PLT Scheme macro system treats keywords in the same way
as a number or a boolean. For example, a pattern for a macro can
match a literal keyword:

(define-syntax show
(syntax-rules ()

[(_ #:canvas c expr ...)
(call-with-canvas c (lambda () expr ...))]

[(_ expr ...)
(show #:canvas default-canvas expr ...)]))

This macro recognizes an optional #:canvas specification be-
fore a sequence of drawing expressions to select the target of the
drawing operations. For example, the first pattern in the syntax-
rules form matches

(show #:canvas my-canvas (draw-point! 0 0))

while the second clause matches
(show (draw-point! 0 0))

The second clause also matches
(show #:dest my-canvas (draw-point! 0 0))

in which case #:dest is used as an expression, and a syntax error
after expansion reports the misuse of #:dest. That is, the pattern
matcher for macros does not constrain arbitrary pattern variables
against matching literal keywords. The error message “#:dest
is not an expression” is less clear than “the show form expects
#:canvas and does not recognize #:dest,” and a syntax-
case implementation of #:draw could more thoroughly check
its sub-forms. Similarly, the first clause in the show macro does
not match

(show (draw-point! 0 0) #:canvas my-canvas)

since it recognizes #:canvas only at the beginning of the form.
Again, a syntax-case implementation of show could allow
#:canvas in later positions, if desired.2

2 A better solution would be a variant of syntax-rules that handles
keyword constraints and ordering automatically—along with related con-
straints, such as requiring an identifier.

3

(define-struct 〈id〉 (〈field〉 ...) 〈struct-option〉 ...)

〈field〉 = 〈field-id〉
| [〈field-id〉 〈field-option〉 ...]

〈struct-option〉 = #:super 〈super-expr〉
| #:auto-value 〈auto-expr〉
| #:property 〈prop-expr〉 〈val-exr〉
| #:transparent

〈field-option〉 = #:mutable
| #:auto

Figure 3: Partial grammar for PLT Scheme’s define-struct

Syntactic forms in PLT Scheme that use keywords include the
define-struct form and the ->* contract constructor. Both
are typical in that they allow keywords only in specific places
(instead of anywhere between the form’s parentheses). For ex-
ample, the syntax of define-struct is shown in Figure 3,
where keyword-tagged options appear only within 〈field〉s and after
the 〈field〉 sequence. In the allowed positions, however, keywords
are used in a more flexible way than in an application form; the
#:transparent, #:mutable, and #:auto keywords need
no corresponding argument expression, while the #:property
keyword is followed by two expressions. This combination of con-
straints (i.e., requiring keywords in certain positions) and general-
izations (i.e., allowing different numbers of expressions associated
with a keyword) compared to procedure application is the preroga-
tive of a syntactic form.

At the same time, define-struct relies on the prohibition
of unquoted keywords as expressions to provide good error mes-
sages when parsing a set of 〈struct-option〉s, such as when the
#:super keyword lacks a corresponding expression before the
next keyword. The consistent role of keywords as non-expression
delimiters has encouraged the use of keywords within syntactic
forms for PLT Scheme.

4. Implementation
Although lambda and the procedure-application form in PLT
Scheme support keyword and optional arguments, the core com-
piler does not directly support them. Instead, support for keyword
and optional arguments is implemented as a macro in a library, in
the same way that unit and class are implemented as macros
over the core lambda form. The only core support for keywords
is a keyword datatype and reader syntax.

The library is implemented so that the keyword-supporting ap-
plication form is equivalent to the core application form when no
keywords are supplied, and a lambda form with no keyword or
optional arguments is equivalent to the core lambda form. Fur-
thermore, a procedure with only optional keyword arguments can
be called through the core application form. These constraints on
the design preserve the performance of keywordless procedure ap-
plications and provide good interoperability between libraries that
use and do not use keyword-supporting syntactic forms.

A PLT Scheme library can implement an extended application
form, because an application form implicitly uses the #%app bind-
ing in its lexical environment. For example, in

(require (rename-in scheme [#%app orig-#%app]))
(define-syntax-rule (#%app expr ...)

(begin
(orig-#%app printf "at ∼s\n" ’(expr ...))
(orig-#%app expr ...)))

(+ 1 (+ 2 3))

each application of + prints debugging information before evaluat-
ing the application:

at (+ 1 (+ 2 3))
at (+ 2 3)
6

The library that implements keyword and optional arguments
supplies an #%app macro in addition to lambda and define
to replace the core bindings. The replacement macros expand a
keyword-supporting lambda, #%app, or define into a combi-
nation of primitive forms and run-time functions (such as make-
keyword-procedure) that implement keyword arguments.

To allow procedures with optional keywords to be applied
through the core application form, the implementation relies on
a second PLT Scheme facility that predates support for keywords:
applicable structure types. When the core application form encoun-
ters a value to apply that is not a procedure, it checks whether the
value is an instance of a structure type that has an associated appli-
cation operation (which is itself represented as a procedure). If so,
it uses the associated operation to apply the structure to the given
arguments. For example, another way to create noisy procedure
applications is to wrap the base procedure in a traced structure:

(define-struct traced (f)
#:property prop:procedure ; => applicable

(lambda (t . args)
(let ([f (traced-f t)])

(printf "∼s\n" (cons f args))
(apply f args))))

(define traced-cons (make-traced cons))
(traced-cons 1 2)

Internally, the keyword-handling part of a procedure is repre-
sented by a core procedure that accepts a list of keywords, a list
of corresponding values, and then the by-position arguments—just
like a procedure given to make-keyword-procedure. This in-
ternal representation is wrapped in an applicable structure, where
the application operation (which is used by a non-keyword appli-
cation form) calls the internal procedure with empty keyword and
keyword-value lists. The application form with keywords, mean-
while, extracts the internal procedure and applies it to non-empty
keyword and value lists. The list of keywords is always sorted al-
phabetically, so that the supplied keywords can be checked against
an expected set without sorting or searching when the internal pro-
cedure is called. The internal procedure is not directly accessible,
since it is wrapped in an opaque structure.

The keyword-supporting application form sorts a set of supplied
keywords at compile time. Compile-time sorting is possible be-
cause keywords in an application are statically apparent; keywords
that act as argument tags are syntactic literals, while expressions
that produce keyword values are never treated as argument tags.
The list of keywords also can be allocated once per call site (as
a quoted list of keywords), while the list of corresponding values
must be allocated for each call. This detail explains why the inter-
nal representation of a keyword-accepting procedure accepts a list
of keywords separate from the list of arguments.

Finally, an applicable structure that represents a keyword pro-
cedure has an associated property to generates a string description
of the procedure’s arity and expected keywords. This property is
used when a procedure that accepts only optional keyword argu-
ments is applied to the wrong number of by-position arguments. In
that case, the arity-mismatch error not only describes the expected
number of by-position arguments, but also the optional keyword ar-
guments. This arity-description property is built into the run-time
system, since it must be used when reporting an arity mismatch
from the core application form.

4

5. Performance
In PLT Scheme, application of a keyword-accepting procedure is
somewhat slower than a keywordless procedure, but the design
presented here significantly outperforms our earlier, more conven-
tional implementation. The performance cost relative to plain pro-
cedures has several causes: applications without optional keywords
must extract a procedure from an applicable structure; keyword ar-
guments are always collected into a list; keyword arguments must
be checked against the expected set of keywords; and the com-
piler currently cannot inline keyword-accepting procedures. Proce-
dures with optional (but no keyword) arguments expand to case-
lambda, in which case the relative cost is lower (no applicable
structure, no keyword checking, and not collecting arguments into a
list), but the compiler currently does not inline multi-clause case-
lambda procedures.

The following loops serve as rough micro-benchmarks:
; A plain procedure
(define (sub1 n) (- n 1))
(let loop ([n 10000000])

(unless (zero? n) (loop (sub1 n))))

; With an optional argument
(define (sub1/opt [n 0]) (- n 1))
(let loop ([n 10000000])

(unless (zero? n) (loop (sub1/opt n))))

; With unsupplied keyword argument
(define (sub1/kw/unused n #:m [m 1]) (- n m))
(let loop ([n 10000000])

(unless (zero? n) (loop (sub1/kw/unused n))))

; Pass the argument in a list
(define (sub1/list nl) (- (car nl) 1))
(let loop ([n 10000000])

(unless (zero? n) (loop (sub1/list (list n)))))

; With a required keyword argument
(define (sub1/kw #:n n) (- n 1))
(let loop ([n 10000000])

(unless (zero? n) (loop (sub1/kw #:n n))))

; Required and unsupplied optional
(define (sub1/kw2 #:n n #:m [m 1]) (- n m))
(let loop ([n 10000000])

(unless (zero? n) (loop (sub1/kw2 #:n n))))

; Many optional keywords
(define (sub1/kws #:a [a 0] #:n [n 5]

#:q [q 0] #:z [z 1])
(- n z))

(let loop ([n 10000000])
(unless (zero? n)

(loop (sub1/kw4 #:n n #:z 1))))

Since the variations of sub1 merely perform a fixnum subtraction
that will be inlined by the compiler, the micro-benchmarks compare
just the overhead of different forms of procedure application. The
run times for these versions are shown in Figure 4. For those
runs, the benchmarks are executed outside of a module, where
the compiler cannot inline definitions (but it can still inline the
subtraction operation).

The “optional” case demonstrates the cost of case-lambda
versus lambda, while the “unused keyword” case demonstrates
the overhead of an applicable structure. The “list” case demon-
strates the overhead of putting a single argument into a list and
extracting it in the called function, as happens to a keyword ar-
gument in our implementation. The “keyword” case demonstrates
the additional overhead of checking provided keyword arguments
against the expected set. The “keywords and unused” case demon-

program CPU time (msec) relative
plain 327 1.0

optional 348 1.0
unused keyword 784 2.3

list 503 1.5
keyword 1115 3.4

required plus optional 1470 4.4
many optional 1999 6.1

Figure 4: Micro-benchmark results for PLT Scheme 4.2.1, on an
2GHz Core Duo MackBook running Mac OS X 10.5.7; results are
median run times over three runs as measured using the time form

implementation plain ...hide keywords ...hide many kws
PLT 48 327 1115 1103 1999

Old PLT 48 327 2869 2866 7891
Gambit-C, default 221 222 989 992 1437

Gambit-C, fast 43 118 897 930 1287
Chicken, default 1066 1079 2478 2502 7881

Chicken, fast 8 353 1203 1430 4529
R6RS, Ikarus 100 100 130* 1237 2054

R6RS, Larceny 66 143 66* 2237 4752
R6RS, PLT 50 361 50* 4644 9001

SBCL 126 217 232 332 473
Allegro CL 150 230 450 520 780

Figure 5: Micro-benchmark results on an 2GHz Core Duo
MackBook running Mac OS X 10.5.7; PLT Scheme version
4.2.1; Gambit-C version 4.4.0, with (declare (standard-
bindings) (block) (fixnum) (not safe)) for the “fast”
variant; Chicken version 4.0.0 with the -Ob compiler flag for the
“fast” variant; Ikarus version 0.0.4-rc1+ revision 1827; Larceny
version 0.97b1; SBCL version 1.0.23; Allego CL express edition
version 8.1; both SBCL and Alllegro CL use (declaim (opti-
mize (speed 3) (safety 1) (space 0) (debug 0)));
results are median run times over three runs as measured using a
time form

strates how the checking overhead grows with both required and
optional keywords, and the “many optional” case demonstrates how
the overhead grows as additional optional keywords are added.

As a further check on the performance of our keyword imple-
mentation, we provide a comparison to several other implementa-
tions:

• An older and more conventional implementation of keyword
arguments in PLT Scheme, where keywords are self-quoting
and keywords are passed as normal procedure arguments.

• Keyword-argument support as provided by Gambit-C (Feeley
2009) and Chicken (Winkelmann et al. 2009), first with the de-
fault compiler settings, and then with settings for faster perfor-
mance.

• Eddington’s R6RS library for keyword procedures3 as run in
Ikarus (Ghuloum 2009), Larceny (Clinger et al. 2009), and PLT
Scheme.

• SBCL (SBCL 2009) and Allego CL (Franz, Inc. 2009) using
Common Lisp standard keyword functions (Steele 1990).

For each implementation, Figure 5 reports run times for the plain,
single-keyword, and many-keyword micro-benchmarks. The plain
and single-keyword benchmarks are each run in two ways: one

3 http://bazaar.launchpad.net/˜derick-eddington/
scheme-libraries/xitomatl/files, revision 180

5

http://bazaar.launchpad.net/~derick-eddington/scheme-libraries/xitomatl/files
http://bazaar.launchpad.net/~derick-eddington/scheme-libraries/xitomatl/files

with a direct use of a defined function within a compilation unit
(e.g., within a module), and another where the function name is
defined as #f and then set!ed to the function (or, in the case of
Common Lisp, setfed and then called via funcall). The latter
corresponds to the ...hide column, and the intent is to defeat inlining
and other static analyses. We measure this difference because our
approach to implementing keywords, if ported to other systems,
might discourage static analysis. For similar reasons, we check
the effect of different compiler settings in Gambit-C and Chicken.
In the R6RS cases, the non-...hide case for keywords is special,
because it works in the opposite direction: it uses a define/kw
form that binds a macro to statically convert keyword arguments to
by-position arguments at the call site.

Not surprisingly, Common Lisp implementations perform key-
word applications with the lowest overhead relative to plain appli-
cations. Keywords in Common Lisp are standard and widely used,
so implementors are motivated to tune their compilers for key-
word arguments. Along similar lines, the result for the new key-
word system in PLT Scheme reflects a 30% speed boost from a
JIT-specialized primitive that fits the structure-unpacking needs of
a keyword application (although the JIT is oblivious to the use of
this primitive for keyword applications). Overall, the results illus-
trate that keywords in PLT Scheme have a typical overhead, even
while providing a better separation of keyword arguments from by-
position arguments and providing more flexibility in the placement
of keyword arguments relative to by-position arguments.

As the first row in Figure 5 shows, the PLT Scheme compiler can
greatly improve performance through procedure inlining, but inlin-
ing is not currently available for procedures that accept keywords.
The performance of inlining could be recovered with a form anal-
ogous to define/kw in Eddington’s R6RS library, which binds
the name of a keyword-accepting procedure to an identifier macro.
The macro expands direct applications of the keyword-accepting
procedure to call a plain procedure—statically converting keyword
arguments into by-position arguments, and thus enabling the usual
inlining optimizations for plain procedures. Note that keyword ar-
guments always can be detected statically by such a macro with our
design, since keywords are a syntactic part of a keyword applica-
tion, instead of dynamically detected as expression results. The per-
formance of keyword applications without macros has been good
enough, however, that we have not yet explored this approach.

6. Experience
Support for optional arguments was one of the first macros that we
included in PLT Scheme. We managed, however, to avoid support-
ing keyword arguments for over a decade. The protocol for key-
word arguments seemed inherently complex, so we tried to live
without them.

Eventually, however, we ended up with too many functions
consuming too many optional arguments, where supplying the
nth optional argument required supplying also the n-1 preceding
optional arguments. We also created many functions that were
small, non-composable variations of each other. For example,
Slideshow (Findler and Flatt 2004) provided a slide function for
generating a slide, a slide/title function for generating a slide
with a title, a slide/center for generating a slide with centered
content, and a slide/title/center function for generating a
slide with a title and centered content. Further variations of slide
included three slashes.

Our initial design for keywords in PLT Scheme was based on
Common Lisp, but with even more extensions and with some at-
tempts to clean up the mingling of keywords and rest arguments.
For example, while an argument tagged with #:rest includes
any supplied keyword arguments (analogous to Common Lisp),
an argument tagged with #:body includes only extra arguments

that follow keyword arguments—and those extra arguments need
not have keywords. We used #:body frequently; for example, a
keyword-based slide procedure must accept keywords for con-
figuration but arbitrary rest arguments for the content of the slide.

Many other beautiful generalizations in our initial keyword sys-
tem, such as the ability to nest optional and keyword syntax in place
of a #:body identifier, went completely unused. Worse, concerns
with error messages and with accidental consumption of keywords
as arguments lead to a relatively restrained use of keywords in our
libraries. To some degree, the complexity of the syntax for defining
keyword-accepting procedures (and notably its lack of connection
to the application syntax) also limited adoption. Finally, having to
import an extra library to obtain the keyword-supporting lambda
form was a significant obstacle.

The design presented here arose from an effort to make keyword
arguments more widely acceptable in PLT Scheme: to simplify
their semantics, to streamline their syntax, and to integrate them
into our main dialect of Scheme. Subjectively, the design feels
right, and we now use keyword arguments in many more functions
and in parts of the language that are closer to the core. For example,
call-with-output-file used to accept optional arguments
to select text versus binary mode and to indicate handling for a file
that exists already. Since the arguments were optional, they were
placed at the end of the argument list, which is after the callback
procedure that is often a lambda expression:

(call-with-output-file
dest
(lambda (out)

....) ; many lines
’truncate
’text)

The distance between the file name and the mode flags made the
code difficult to read and write, and the specification of the extra
arguments was awkward to document (i.e., up to two extra argu-
ments that are distinct symbols from certain sets). Using keyword
arguments, we write the above expression as

(call-with-output-file
dest #:exists ’truncate #:mode ’text
(lambda (out)

....))

In this form, the callback procedure regains its place at the end,
where it belongs. The file name is still the first argument, where it
belongs. The extra optional arguments are more clearly tagged via
keywords, and they can be placed in the middle of the by-position
arguments, which is where they work best. The specification of the
optional arguments (i.e., keyword-tagged with simple defaults) is
straightforward and easy to document.

Before deploying our current design for keyword argument,
we anticipated problems with the pattern (lambda args ...)
to accept arbitrary arguments or (lambda args (apply ...
args)) to propagate all arguments. Those patterns work only
for by-position arguments; generalizing any use of those pat-
terns requires a switch to make-keyword-procedure and
keyword-apply, which is more verbose and more difficult to
remember. For example, the traced example of an applicable
structure in Section 4 does not support tracing of keyword argu-
ments, and it should be generalized as follows:

(define-struct traced (f)
#:property prop:procedure
(make-keyword-procedure

(lambda (kws vals t . args)
(let ([f (traced-f t)])

(printf "∼s\n" (list* f kws vals args))
(keyword-apply f kws vals args)))))

6

For similar reasons, some PLT Scheme library procedures have
not automatically worked with keywords on a first iteration, such
as the const function to produce another function that accepts
any arguments and returns a constant. Such problems are easy to
fix, and occasional missing support for keywords has not been
a significant problem so far, but we expect to provide syntactic
support for the make-keyword-procedure and keyword-
apply pattern.

The initial implementation of our design for keywords did not
include the extra property for arity reporting that is described at
the end of Section 4. As a result, if the keyword-based call-
with-output-file was applied to four by-position arguments,
the error message simply reported that the procedure expects one to
two arguments without mentioning that the procedure also accepts
optional #:exists and #:mode arguments. Indeed, such an
error message often appeared as a result of a call to call-with-
output-file using old-style optional symbols instead of the
new keyword arguments. PLT Scheme users immediately requested
improvement in the error message, which reflects the demand for
clear error reporting that our design was created to satisfy.

7. Related Work
We know of three major designs for keywords in Lisp and Scheme:
keywords in Common Lisp (Steele 1990), keywords in DSSSL (ISO
1996), and SRFI-89 (Feeley 2007). At least one other design has
been implemented through portable Scheme macros. Ada, Python,
and OCaml, support keyword arguments, while keyword arguments
in Smalltalk are fundamentally different. We take each of these in
turn in the following sections, and we end with a brief discussion
of the syntax of keywords in Scheme.

7.1 Common Lisp
In Common Lisp, keywords are the same datatype as symbols,
but they are written with a : prefix and they are self-quoting as
an expression. (This is actually a trick related to packages; see
Section 7.7.)

A Lisp procedure definition can include the special identifiers
&optional or &key before a set of arguments to declare them
as optional or by-keyword. In the latter case, the local name of the
argument effectively doubles as the keyword. Keyword arguments
are always optional, and the default value for optional and keyword
arguments is nil if none is declared. An &allow-other-keys
declaration suppresses rejection of keywords for actual arguments
that have no corresponding &key formal argument. A “rest” ar-
gument can be specified with the &rest declaration, which must
appear before any &key declarations. (The full syntax is somewhat
more complex, but those are the main points.)

For example, a rectangle procedure that accepts a width,
an optional height that default to the width, and and an optional
keyword-tagged color argument that defaults to "pink" is written
and called as

(defproc (rectangle width
&optional (height width)
&key (color "pink"))

....)

(rectangle 10 20 :color "blue")
The semantics of &optional and &key declarations is essen-

tially to extend the number of arguments accepted by the procedure,
and then post-process the list of extra by-position arguments to
match them with optional and keyword arguments. When the func-
tion consumes keyword arguments, the total number of arguments
after the by-position arguments must be even, and the keywords
that tag arguments are interleaved with the argument values–i.e.,
the argument list is used as a plist. When both &key and &rest

are used, arguments that are candidates for keyword arguments (in-
cluding the keywords themselves) are collected into a &rest ar-
gument, and the number of arguments must be even.

With keywords as part of the standard, many standard proce-
dures in Common Lisp can exploit keyword arguments. For ex-
ample, the member function accepts a comparison procedure as a
test: argument, in contrast to Scheme’s proliferation of separate
member, memv, memq, and memp procedures.

An advantage of implementing keyword-argument passing
as normal arguments, as in Common Lisp, is that procedures
like apply work with keywords automatically, and the &rest-
argument convention accommodates arbitrary keywords (at least
when &allow-other-keys is declared). Separate keyword-
apply and make-keyword-procedure procedures are un-
necessary.

Compared to our design, however, the Common Lisp design
suffers several drawbacks:

• Since optional- and keyword-argument values are drawn from
the same set of actual arguments, and since the keywords
that are meant as tags are passed the same as ordinary argu-
ments, keywords can be accidentally consumed as optional ar-
guments. As noted by Seibel (2005), “Combining &optional
and &key parameters yields surprising enough results that you
should probably avoid it altogether.”

• Although folding keyword arguments into a &rest arguments
makes sense in combination with &allow-other-keys,
it means that a procedure cannot generally accept both by-
position rest arguments and keyword arguments. Instead, using
keywords forces the rest argument to be a plist.

• Keyword arguments must be placed last in a procedure applica-
tion. That is, keywords can be in any order relative to each other,
but they must appear after all required and optional by-position
arguments.

The first two drawbacks, in particular, inhibit the use of keywords
to extend existing procedures that already use optional or rest argu-
ments. Our design accommodates such extensions, while produc-
ing more consistent error messages and being simpler to explain
overall.

Dylan (Shalit 1996) supports keyword arguments in much the
same way as Common Lisp, except that only keyword arguments
can be optional. Furthermore, Dylan distinguishes keyword tags
in applications from argument expressions, so that a keyword in-
tended as a tag is never accepted as an argument value. Dylan thus
achieves many of the goals in our design of providing a better sep-
aration between keyword and by-position arguments, but it does so
by restricting the Common Lisp model. A remaining drawback is
that keyword arguments cannot be mixed with by-position argu-
ments.

7.2 DSSSL
DSSSL includes an expression language that is based on Scheme,
but it includes keyword arguments similar to those of Common
Lisp. Keywords in DSSSL are a separate datatype from symbols;
they are written like symbols, but with a trailing :. Instead of
identifiers like &key that are treated specially in argument lists,
DSSSL uses the special constants #!key, #!optional, and
#!rest (and it omits the other declarations of Common Lisp).
The semantics of procedure calls and argument processing are as
in Common Lisp.

The rectangle example in DSSSL syntax looks like the
Common Lisp version, but with & changed to #! and a colon in
the application moved to the end of the keyword:

(define (rectangle width
#!optional (height width)

7

#!key (color "pink"))
....)

(rectangle 10 20 color: "blue")

DSSSL-style keyword and optional arguments is implemented
by several Scheme implementations, including Bigloo (Serrano
2009), Chicken (Winkelmann et al. 2009), and Gambit (Feeley
2009), though details vary slightly. For example, #!key is a sym-
bol in Chicken. Compared to our design, keyword and optional ar-
guments in DSSSL have the same advantages and drawbacks as in
Common Lisp.

7.3 SRFI-89
Like DSSSL, SRFI-89 distinguishes keyword values from symbols,
uses a trailing : for the syntax of keywords, and keywords are
self-quoting. Unlike DSSSL, SRFI-89 regularizes the syntax of
procedures with keyword and optional arguments by making the
procedure syntax more closely match the application syntax.

A keyword is associated with an argument in a procedure ex-
pression by placing the keyword before the formal argument; a
small difference to our syntax is that the keyword and argument
identifier are grouped by parentheses. An optional argument is de-
clared by placing a default-value expression after the formal ar-
gument, and then grouping the two with parentheses. A keyword
argument can be required, or it can be made optional by adding a
default-value expression after identifier, within the parentheses that
group it with the keyword.

The rectangle example could be written with SRFI-89 as
follows:

(define (rectangle width
(height width)
(color: color "pink"))

....)

(rectangle 10 20 color: "blue")

Our design mostly imitates the SRFI-89 syntax, because we
value the syntactic similarly of declarations and applications. We
depart from SRFI-89 syntax in not grouping a keyword with a
formal argument in a procedure declaration, because that change
further strengthens the similarity to applications (where a keyword
and its argument expression are not grouped with parentheses).

SRFI-89 separates a rest argument from keyword arguments; an
argument is consumed either as a keyword argument or collected
into the rest argument, but never both. SRFI-89 also generalizes
keyword support by allowing keyword arguments to appear before
by-position arguments. Unlike our design, however, keywords are
either grouped together before by-position arguments or together
after by-position arguments, and the order for a given procedure is
determined by the procedure declaration. A drawback of this ap-
proach is that callers of a procedure must remember which order is
used for a given procedure. Our design more completely separates
by-position and by-keyword arguments, so that keyword arguments
can always appear in any order relative to by-position arguments.

As in Common Lisp and DSSSL, optional- and keyword- argu-
ment handling is defined in terms of post-processing a sequence of
by-position arguments, where keyword tags are mingled with ar-
gument values. As a result, it suffers from the many of the same
problems in terms of accidental treatment of a keyword tag as a
direct argument.

7.4 Implementation via Macros
Scheme macros support a portable implementation of optional and
keyword arguments, although no such implementation has become
widely used. One recent effort is Eddington’s implementation for
R6RS, which we used for performance measurements in Section 5.

A lack of documentation for the library makes a detailed compar-
ison difficult, but as we noted in Section 5, the library supplies a
define/kw form for binding names that resolve keyword argu-
ments statically. Having no syntactic distinction between keywords
as expressions and keywords as argument tags, however, makes the
library’s static resolution inconsistent with its dynamic resolution.4

A variant of our design appears to be possible as a portable im-
plementation using macros. Keywords could be identified through
a keyword form that signals a syntax error when used as an ex-
pression, while an explicit with-keyword form would serve the
role of a keyword-allowing application form that detects keyword
tags. The combination of keyword and with-keyword enables
the distinction between keyword tags and argument expressions,
though it is syntactically more verbose than a built-in syntax of key-
words or allowing #%app to be refined. To allow a procedure with
optional keywords to be called through a normal application form,
keyword-accepting procedures would be represented as plain pro-
cedures (since Scheme standards do not include applicable struc-
ture types); the protocol for supplying keyword arguments could
use a special value as a regular argument to indicate that certain
other arguments provide lists of keywords and associated values.

7.5 Ada, Python, and OCaml
Every function in Ada or Python supports keyword arguments,
where the name of each formal argument doubles as the keyword
for the argument. In a function call, by-position arguments are
provided first and matched to formal arguments in order, and then
keyword arguments can appear (in any order) to supply values for
the remaining arguments. As in our design, keyword arguments
are syntactically distinguished from by-position arguments in a
function call. Unlike our design, by-position arguments must be
supplied first.

Ada’s double role for every formal argument as both a by-
position and by-keyword argument is different from Lisp and
Scheme systems, where formal argument names are purely local.
Exposing all argument names as keywords in Scheme conflicts with
other important aspects of the language, such as alpha renaming.
A workable syntax might have the programmer annotate identifiers
that should double as by-position and by-keyword arguments.

OCaml supports labels on function arguments that are similar
to Ada’s keyword arguments. A programmer explicitly designates
labeled formal arguments using ∼ on the argument (and, optionally,
a label that is separate from the argument’s local identifier). The
label of an argument becomes part of the function’s type, which
means that the compiler can always statically adjust the order of
labeled arguments in a function call—even changing the order
of curried applications to match the declaration order. Labelled
arguments also can be optional (which, again, is exposed in the
type of the function).

Finally, the PLT Scheme class system behaves much like Ada, in
that class initialization arguments (i.e., constructor arguments) are
usually supplied by name, but they can also be supplied by position.
If arguments are supplied by position, the order of the names in the
class declaration is used to match them with arguments values. This
design pre-dates general keyword support in PLT Scheme, and it
mainly provided backward compatibility with a previous iteration
of the class system that supported only by-position initialization
arguments.

Allowing keyword arguments to be supplied by position, as
in Ada, conflicts somewhat with allowing keyword arguments in
any order relative to by-position arguments; perhaps sensible rules
could be specified to govern a mixed order of arguments with and

4 http://groups.google.com/group/ikarus-users/
browse_thread/thread/fb3a813c198311ff

8

http://groups.google.com/group/ikarus-users/browse_thread/thread/fb3a813c198311ff
http://groups.google.com/group/ikarus-users/browse_thread/thread/fb3a813c198311ff

without keywords. Ada-style argument handling also conflicts with
combining keyword arguments and a by-position rest argument.
More generally, we have not found much need for passing keyword
arguments by position.

7.6 Smalltalk
In Smalltalk, most methods arguments are tagged with names, but
the tags are not keywords in the sense of this paper. The tag on a
Smalltalk method argument is simply part of the method name that
is interleaved with the arguments; the tags and arguments cannot be
reordered, and individual arguments are not optional.

7.7 Keyword Lexical Syntax
A keyword in Common Lisp is prefixed with :. This choice of syn-
tax is related to Common Lisp’s notion of package-specific sym-
bols, where the empty package name corresponds to the “keyword”
package. Conceptually, keywords are self-quoting because all sym-
bols in the keyword package are bound to themselves.

In DSSSL and many Scheme systems, a keyword is suffixed
with :, instead of prefixed with :. To many programmers, the suffix
better connects the keyword with its argument, while others argue
that a prefix is more appropriate for a prefix-oriented language like
Scheme.

PLT Scheme uses a #: prefix. Chicken also supports a #: pre-
fix in addition to a : suffix, though the keyword in both cases is
equivalent to a symbol. The #: choice is natural for Scheme, since
a # is normally used to extend the reader syntax, and : is normally
allowed in symbols (i.e., some symbols and identifiers in existing
code might break if a : prefix or suffix becomes the syntax of key-
words). Many argue, however, that #: looks too heavy, while the
whole point of keywords is arguably to add a lightweight grouping
syntax to the language (i.e., lighter weight than parentheses). Also,
Common Lisp uses the prefix #: for uninterned symbols.

We can offer no rationale that will resolve the debate. We chose
#: because it broke no existing code and because at least one
author likes how it stands out. An informal poll among PLT Scheme
users suggested roughly equal support for all three choices (prefix
#:, prefix :, and suffix :) with a slightly higher preference for
#:—possibly reflecting the syntax that is already in place. In any
case, PLT Scheme’s #lang notation would allow future modules
to be written using a different syntax without affecting old modules.

8. Conclusion
Scheme’s “rest” arguments and case-lambda allow flexible
handling of procedure arguments, and they easily accommodate
keyword-like patterns using symbols and lists. When a pattern is
used widely enough, however, converting the pattern to a language
construct offers many advantages: better readability, clearer docu-
mentation, better error messages, easier composition of libraries,
and a central point of control for implementation details of the pat-
tern. For all of these reasons, we believe that specific constructs
for keyword and optional arguments are appropriate for dialects of
Scheme.

The essential elements of our design are (1) keywords that are
distinct from symbols, as in many Scheme systems, (2) a form for
creating keyword-based procedures that matches the application
syntax, similar to SRFI-89, (3) disallowing unquoted keywords as
literal expressions, which is novel in our design, and (4) passing
keyword arguments to a procedure in a way that reliably separates
them from by-position arguments, which is also novel.

Bibliography
John Clements and Matthias Felleisen. A Tail-Recursive Machine with

Stack Inspection. ACM Trans. Pogramming Languages and Systems
26(6), pp. 1029–1052, 2004.

William D. Clinger et al. Larceny. 2009. http://www.ccs.neu.edu/
home/will/Larceny/

Marc Feeley. SRFI-89: Optional Positional and Named Parameters. 2007.
Marc Feeley. Gambit v4.4.3. 2009. http://www.iro.umontreal.

ca/˜gambit/

Robert Bruce Findler and Matthew Flatt. Slideshow: Functional Presenta-
tions. In Proc. ACM Intl. Conf. Functional Programming, pp. 224–235,
2004.

Franz, Inc. Allegro CL. 2009. http://www.franz.com/

Abdulaziz Ghuloum. Ikarus Scheme v3.0+. 2009. http:
//ikarus-scheme.org/

ISO. Document Style Semantics and Specification Language (DSSSL).
ISO/IEC 10179:1996, 1996.

SBCL. 2009. http://sbcl.sourceforge.net/

Peter Seibel. Practical Common Lisp. Apress, 2005.
Manuel Serrano. Bigloo v3.2b-2. 2009. http://www-sop.inria.

fr/mimosa/fp/Bigloo/

Andrew Shalit. The Dylan Reference Manual. Addison-Wesley, 1996.

Michael Sperber (Ed.). The Revised 6 Report on the Algorithmic Language
Scheme. 2007.

Guy L. Steele Jr. Common Lisp: The Language. Second edition. Digital
Press, 1990.

Felix Winkelmann, Kon Lovett, and Leonard Frank (elf). Chicken v4.0.0.
2009. http://www.call-with-current-continuation.
org/

Appendix
Implementation of optional arguments in terms of case-lambda:

(define-syntax lambda
(syntax-rules ()

[(lambda (arg rest) . body)
(letrec ([f (case-lambda* f (arg ...) () ()

rest body)])
f)]))

(define-syntax case-lambda*
(syntax-rules ()

[(case-lambda* f () (id ...) (clause ...)
rest body)

(case-lambda clause ...
[(id rest) . body])]

[(case-lambda* f ([opt-id default-expr]
. rest-args)

(id ...) clauses rest body)
(case-lambda* f rest-args (id ... opt-id)

([(id ...)
(f id ... default-expr)]

. clauses)
rest body)]

[(case-lambda* f (req-id . rest-args)
(id ...) clauses rest body)

(case-lambda* f rest-args (id ... req-id)
clauses rest body)]))

9

http://www.ccs.neu.edu/home/will/Larceny/
http://www.ccs.neu.edu/home/will/Larceny/
http://www.iro.umontreal.ca/~gambit/
http://www.iro.umontreal.ca/~gambit/
http://www.franz.com/
http://ikarus-scheme.org/
http://ikarus-scheme.org/
http://sbcl.sourceforge.net/
http://www-sop.inria.fr/mimosa/fp/Bigloo/
http://www-sop.inria.fr/mimosa/fp/Bigloo/
http://www.call-with-current-continuation.org/
http://www.call-with-current-continuation.org/

	1 Using Keyword and Optional Arguments
	2 Syntax and Semantics
	3 Keywords in Other Syntactic Forms
	4 Implementation
	5 Performance
	6 Experience
	7 Related Work
	7.1 Common Lisp
	7.2 DSSSL
	7.3 SRFI-89
	7.4 Implementation via Macros
	7.5 Ada, Python, and OCaml
	7.6 Smalltalk
	7.7 Keyword Lexical Syntax

	8 Conclusion

