
Scribble: Closing the Book on Ad Hoc Documentation Tools

Matthew Flatt
University of Utah and PLT

mflatt@cs.utah.edu

Eli Barzilay
Northeastern University and PLT

eli@ccs.neu.edu

Robert Bruce Findler
Northwestern University and PLT
robby@eecs.northwestern.edu

Abstract
Scribble is a system for writing library documentation, user guides,
and tutorials. It builds on PLT Scheme’s technology for language
extension, and at its heart is a new approach to connecting prose
references with library bindings. Besides the base system, we have
built Scribble libraries for JavaDoc-style API documentation, liter-
ate programming, and conference papers. We have used Scribble
to produce thousands of pages of documentation for PLT Scheme;
the new documentation is more complete, more accessible, and bet-
ter organized, thanks in large part to Scribble’s flexibility and the
ease with which we cross-reference information across levels. This
paper reports on the use of Scribble and on its design as both an
extension and an extensible part of PLT Scheme.

Categories and Subject Descriptors I.7.2 [Document and Text
Processing]: Document Preparation—Languages and systems

General Terms Design, Documentation, Languages

1. Documentation as Code
Most existing documentation tools fall into one of three categories:
LATEX-like tools that know nothing about source code; JavaDoc-
like tools that extract documentation from annotations in source
code; and WEB-like literate-programming tools where source code
is organized around a prose presentation.

Scribble is a new documentation infrastructure for PLT Scheme
that can support and integrate all three kinds of tools. Like the LATEX
category, Scribble is suitable for producing stand-alone documents.
Like the other two categories, Scribble creates a connection be-
tween documentation and the program that it describes—but with-
out restricting the form of the documentation like JavaDoc-style
tools, and with a well-defined connection to the language’s scop-
ing that is lacking in WEB-like tools. Specifically, Scribble lever-
ages lexical scoping as supplied by the underlying programming
language, instead of ad hoc textual manipulation, to connect doc-
umentation and code. This connection supports abstractions across
the prose and code layers, and it enables a precise and consistent
association (e.g., via hyperlinks) of references in code fragments to
specifications elsewhere in the documentation.

For example, @scheme[circle] in a document source gen-
erates the output text circle. If the source form appears within
a lexical context that imports the slideshow library, then the
rendered circle is hyperlinked to the documentation for the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

Figure 1: DrScheme with binding arrows and documentation links
on Scribble code

slideshow library—and not to the documentation of, say, the
htdp/image library, which exports a circle binding for a
different GUI library. Moreover, the hyperlink is correct even if
@scheme[circle] resides in a function that is used to generate
documentation, and even if the lexical context of the call does not
otherwise mention slideshow. Such lexically scoped fragments
of documentation are built on the same technology as Scheme’s lex-
ically scoped macros, and they provide the same benefits for docu-
mentation abstraction and composition as for ordinary programs.

To support documentation in the style of JavaDoc, a Scribble
program can “include” a source library and extract its documen-
tation. Bindings in the source are reflected naturally as cross-
references in the documentation. Similarly, a source program
can use module-level imports to introduce and compose literate-
programming forms; in other words, the module system acts as
the language that Ramsey (1994) has suggested to organize the
composition of noweb extensions.

Scribble’s capacity to span documentation-tool categories is
a consequence of PLT Scheme’s extensibility. Extensibility is an
obstacle for JavaDoc-style tools, which parse a program’s source
text and would have to be extended in parallel to the language.
Scribble, in contrast, plugs into the main language’s extensibility
machinery, so it both understands language extensions and is itself
extensible. Similarly, Scheme macros accommodate a WEB-like

organization of a library’s implementation, and the same macros
can simultaneously organize the associated documentation.

Indeed, Scribble documents are themselves Scheme programs,
which means that PLT Scheme tools can work on Scribble sources.
Figure 1 shows this paper’s source opened in DrScheme. After
clicking Check Syntax, then a right-click on a use of emph
directly accesses the documentation of the emph function, even
though the surface syntax of the document source does not look
like Scheme. Such documentation links are based on the same lex-
ical information and program-expansion process that the compiler
uses, so the links point precisely to the right documentation.

We developed Scribble primarily for stand-alone documenta-
tion, but we have also developed a library for JavaDoc-style ex-
traction of API documentation, and we have created a WEB-style
tool for literate programming. In all forms, Scribble’s connection
between documentation and source plays a crucial role in cross-
referencing, in writing examples within the documentation, and in
searching the documentation from within the programming envi-
ronment. These capabilities point the way toward even more so-
phisticated extensions, and they illustrate the advantages of treating
documentation as code.

2. Scribbling Prose
The beginning of the PLT Scheme overview documentation demon-
strates several common typesetting forms:

1 Welcome to PLT Scheme

Depending on how you look at it, PLT Scheme is
• a programming language — a descendant of Scheme,

which is a dialect of Lisp;
• a family of programming languages — variants of Scheme,

and more; or
• a set of tools for using a family of programming lan-

guages.
Where there is no room for confusion, we use simply
“Scheme” to refer to any of these facets of PLT Scheme.

The Scribble syntax for generating this document fragment is rem-
iniscent of LATEX, using @ (like texinfo) instead of \:

#lang scribble/doc
@(require scribble/manual)

@section{Welcome to PLT Scheme}

Depending on how you look at it, @bold{PLT Scheme}
is

@itemize[
@item{a @emph{programming language} --- a

descendant of Scheme, which is a dialect
of Lisp;}

@item{a @emph{family} of programming languages
--- variants of Scheme, and more; or}

@item{a set of @emph{tools} for using a family
of programming languages.}

]

Where there is no room for confusion, we use
simply ‘‘Scheme’’ to refer to any of these facets
of PLT Scheme.

The initial #lang scribble/doc line declares that the module
uses Scribble’s documentation syntax, as opposed to using #lang
scheme for S-expression syntax. At the same time, the #lang
line also imports all of the usual PLT Scheme functions and syn-
tax. The @(require scribble/manual) form imports ad-
ditional functions and syntactic forms specific to typesetting a user
manual. The remainder of the module represents the document con-
tent. The semantics of the document body is essentially that of
Scheme, where most of the text is represented as Scheme strings.

Although we build Scribble on Scheme, a LATEX-style syntax
works better than nested S-expressions, because it more closely
resembles the resulting textual layout. First, although all of the
text belongs in a section, it is implicitly grouped by the section
title, instead of explicitly grouped into something like a section
function call. Second, the default parsing mode is “text” instead
of “expression,” so that commas, periods, quotes, paragraphs, and
sections behave in the usual way for prose, while the @ notation
provides a uniform way to escape to a Scheme function call with
text-mode arguments. Third, various automatic rules convert ASCII
to more sophisticated typeset forms, such as the conversion of ---
to an em-dash and ‘‘...’’ to curly quotes.

Although LATEX and Scribble use a similar syntax, the semantics
are completely different. For example, itemize is a function that
accepts document fragments created by the item function, instead
of a text-parsing macro like LATEX’s itemize environment. The
square brackets after itemize in the document source reflect that
it accepts item values, whereas item and many other functions
are followed by curly braces that indicate text arguments. The @-
notation is simply another way of writing S-expressions, as we
describe in detail in Section 4.

3. Scribbling Code
The PLT Scheme tutorial “Quick: An Introduction to PLT Scheme
with Pictures” starts with a few paragraphs of prose and then shows
the following example interaction:

> 5
5
> "art gallery"
"art gallery"

The > represents the Scheme prompt. The first 5 is a constant value
in an expression, so it is colored green in the tutorial, while the
second 5 is a result, so it is colored blue. In Scheme, the syntax
for output does not always match the syntax for expressions, so the
different colors are useful hints to readers—but only if they have
the consistency of an automatic annotation.

The source code for the first example is simply

@interaction[5 "art gallery"]

where interaction is provided by a Scribble library to both
evaluate examples and typeset the expressions and results with
syntax coloring. Since example expressions are evaluated when the
document is built, examples never contain bugs where evaluation
does not match the predicted output.

The second example in the “Quick” tutorial shows a more inter-
esting evaluation:

> (circle 10)

Here, again, the expression is colored in the normal way for PLT
Scheme code. More importantly, the circle identifier is hyper-
linked to the definition of the circle function in the slideshow
library, so an interested reader can follow the link to learn more
about circle. Meanwhile, the result is shown as a circle im-
age, just as it would be shown when evaluating the expression in
DrScheme.

The source code for the second example is equally simple:

@mr-interaction[(circle 10)]

The author of the tutorial had to implement the mr-interaction
syntactic form, because interaction does not currently support
picture results. The syntax coloring, hyperlinking, and evaluation
of (circle 10), however, is implemented by expanding to in-
teraction. In particular, circle is correctly hyperlinked be-
cause the module containing the above source also includes

@(require (for-label slideshow))

which causes the circle binding to be imported from the
slideshow module for the purposes of hyperlinking. Based on
this import and a database mapping bindings to definition sites,
Scribble can automatically insert the hyperlink.

A module that is imported only with for-label is not run
when the documentation is built, because the time at which a
document is built may not be a suitable time to actually run a
module. As an extreme example, an author might want to document
a module whose job is to erase all files on the disk. More practically,
executing a GUI library might require a graphics terminal, while
the documentation for the graphics library can be built using only
a text terminal.

Pervasive and precise hyperlinking of identifiers greatly im-
proves the quality of documentation, and it relieves a document
author from much tedious cross-referencing work, much like au-
tomatic hyperlinking in wikis. The author need not specify where
circle is documented, but instead merely import for-label
a module that supplies circle, and the documentation system
is responsible for correlating the use and the definition. Further-
more, since hyperlinks are used in examples everywhere, an au-
thor can expect readers to follow them, instead of explicitly writ-
ing “for more information on the circle procedure used above,
see ...” These benefits are crucial when a system’s documentation
runs to thousands of pages. Indeed, PLT Scheme’s documentation
has 57,997 links between manuals, which is roughly 15 links per
printed page (and which does not count the additional 105,344
intra-manual links).

Clicking the circle hyperlink leads to its documentation in a
standard format:

(circle diameter) → pict?
diameter : real?

Creates an unfilled ellipse.

In this definition, real? and pict? are contracts for the function
argument and result. Naturally, they are in turn hyperlinked to their
definitions, because suitable libraries are imported for-label in
the documentation source.

The above documentation of circle is implemented using
defproc:

@defproc[(circle [diameter real?]) pict?]{
Creates an unfilled ellipse.
}

Alternatively, instead of writing the documentation for cir-
cle in a stand-alone document—where there is a possibility
that the documented contract does not match the contract in the
implementation—the documentation could be written with the im-
plementation of circle. In that case, the documentation would
look slightly different, since it would be part of the module’s export
declarations:

(provide/doc
[circle ([diameter real?] . -> . pict?)

@{Creates an unfilled ellipse.}])

With provide/doc, the single contract specification for cir-
cle is used in two ways: at run time to check arguments and re-
sults for circle, and when building the documentation to show
the expected arguments and results of circle.

Although defproc and provide/doc are provided with
Scribble, they are not built into the core typesetting engine. They
are written in separate libraries, and Scribble users could have
implemented these forms. We describe this approach to extending
Scribble further in Section 8.

4. @s and []s and {}s, Oh My!
Users of a text-markup language experience first and foremost the
language’s concrete syntax. The same is true of any language, but in
the case of text, authors with different backgrounds have arrived at a
remarkably consistent view of the appropriate syntax: it should use
blank lines to indicate paragraph breaks, double-quote characters
should not be special, and so on. At the same time, a programmable
mark-up language needs a natural escape to the programming layer
and back.

From the perspective of a programming language, conventional
notations for string literals are terrible for writing text. The quot-
ing rules tend to be complex, and they usually omit an escape for
arbitrarily nested expressions. “Here strings” and string interpola-
tion can alleviate some of the quoting and escape problems, but
they are insufficient for writing large amounts of text with fre-
quent nested escapes to the programming language. More impor-
tantly, building text in terms of string escapes and operations like
string-append distracts from the business of writing prose,
which is about text and markup rather than strings and function
calls.

Indeed, many documentation systems, like JavaDoc, avoid the
limitations of string literals in the language by defining a com-
pletely new syntax that is embedded within comments. Of course,
this approach sacrifices any connection between the text and the
programming language.

For Scribble, our solution is the @-notation, which is a text-
friendly alternative to traditional S-expression syntax. More pre-
cisely, the @-notation is another way to write down arbitrary S-
expressions, but it is tuned for writing blocks of free-form text.
The @-expression notation is a strict extension of PLT Scheme’s
S-expression syntax; the @ character has no special meaning in
Scheme strings, in comments, or in the middle of Scheme iden-
tifiers. Furthermore, since it builds on the existing S-expression
parser, it inherits all of the existing source-location support (e.g.,
for error messages).

4.1 @-expressions as S-expressions
The grammar of an @-expression is roughly as follows (where @, [,
], {, and } are literal, and x? means that x is optional):

〈at-expr〉 ::= @〈op〉?[〈S-expr〉*]?{〈text〉}?
〈op〉 ::= 〈S-expr〉 that does not start with [or {
〈S-expr〉 ::= any PLT Scheme S-expression
〈text〉 ::= text with balanced {...} and with @-exprs

An @-expression maps to an S-expression as follows:

• An @〈op〉{...} sequence combines 〈op〉 with text-mode argu-
ments. For example,

@emph{Yes!}

is equivalent to the S-expression

(emph "Yes!")

Also, since @ keeps its meaning inside text-mode arguments,

@section{Country @emph{and} Western}

is equivalent to the S-expression

(section "Country " (emph "and") " Western")

• An @〈op〉[...] sequence combines 〈op〉 with S-expression ar-
guments. For example,

@itemize[(item "a") (item "b")]

is equivalent to the S-expression

(itemize (item "a") (item "b"))

• An @〈op〉[...]{...} sequence combines S-expression argu-
ments and text-mode arguments. For example,

@title[#:style ’toc]{Contracts}

is equivalent to the S-expression

(title #:style ’toc "Contracts")

where #:style uses PLT Scheme notation for a keyword.
• An @〈op〉 sequence without an immediately following { or [is

equivalent to just 〈op〉 in Scheme mode. For example,

@username

is equivalent to the S-expression

username

so that

@emph{committed by @username}

is equivalent to

(emph "committed by " username)

• An 〈op〉 can be omitted in any of the above forms. For example,

@{Country @emph{and} Western}

is equivalent to the S-expression

("Country " (emph "and") " Western")

which is useful in some quoted or macro contexts.

Another way to describe the @-expression syntax is simply
@〈op〉[...]{...} where each of the three parts is optional. When
〈op〉 is included but both kinds of arguments are missing, then 〈op〉
can produce a value to use directly instead of a function to call. The
〈op〉 in an @-expression is not constrained to be an identifier; it can
be any S-expression that does not start with { or [. For example, an
argumentless @(require scribble/manual) is equivalent
to the S-expression (require scribble/manual).

The spectrum of @-expression forms enables a document author
to use whichever variant is most convenient. For a given opera-
tion, however, one particular variant is typically used. In general,
@〈op〉{...} or @〈op〉[...] is used to imply a typesetting operation,
whereas @〈op〉 more directly implies an escape to Scheme. Hence,
the form @emph{Yes!} is preferred to the equivalent @(emph
"Yes!"), while @(require scribble/manual) is pre-
ferred to the equivalent @require[scribble/manual].

A combination of S-expression and text-mode arguments is
often useful to “customize” an operation that consumes text. The
@title[#:style ’toc]{Contracts} example illustrates
this combination, where the optional ’toc style customizes the
typeset result of the title function. In other cases, an operation
that specifically leverages S-expression notation may also have a
text component. For example,

@defproc[(circle [diameter real?]) pict?]{
Creates an unfilled ellipse.
}

is equivalent to

(defproc (circle [diameter real?])
pict?
"Creates an unfilled ellipse.")

but as the description of the procedure becomes more involved, us-
ing text mode for the description becomes much more convenient.

An @ works both as an escape from text mode and as a form
constructor in S-expression contexts. As a result, @-forms keep
their meaning whether they are used in a Scheme expression or
in a Scribble text part. This equivalence significantly reduces the
need for explicit quoting and unquoting operations, and it helps
avoid bugs due to incorrect quoting levels. For example, instead
of @itemize[(item "a") (item "b")], an itemization
is normally written @itemize[@item{a} @item{b}], since
items for an itemization are better written in text mode than as
conventional strings; in this case, @item{a} can be used directly
without first switching back to text mode.

Overall, @-expressions are crucial to Scribble’s flexibility in the
same way that S-expressions are crucial to Scheme’s flexibility—
and, in the same way, the benefit is difficult to quantify. Fur-
thermore, just as S-expressions can be used for more than writ-
ing Scheme programs, the @ notation can be used for purposes
other than documentation, and the @-notation parser is available
for use in PLT Scheme separate from the rest of the Scribble in-
frastructure. We use it as an alternative to HTML for building the
plt-scheme.org web pages, more generally in a template sys-
tem supported by the PLT Scheme web server, and also as a text
preprocessor language similar in spirit to m4 for generating plain-
text files.

4.2 Documentation-Specific Decoding
The @ notation supports local text transformations and mark-up,
but it does not directly address some other problems specific to
organizing a document’s source:

• Section content should be grouped implicitly via section,
subsection, etc. declarations, instead of explicitly nesting
section constructions.

• Paragraph breaks should be determined by empty lines in the
source text, instead of explicitly constructing paragraph values.

• A handful of ASCII character sequences should be converted
automatically to more sophisticated typesetting elements, such
as converting ‘‘ and ’’ to curly quotes or --- to an em-dash.

These transformations are specific to typesetting, and they are
not appropriate for other contexts where the @ notation is useful.
Therefore, the @ parser in Scribble faithfully preserves the original
text in Scheme strings, and a separate decode layer in Scribble
provides additional transformations.

Functions like bold and emph apply decode-content to
their arguments to perform ASCII transformations, and item calls
decode-flow to transform ASCII sequences and form para-
graphs between empty lines. In contrast, tt and verbatim do
not call the decode layer, and they instead typeset text exactly as it
is given.

For example, the source document

#lang scribble/doc
@(require scribble/manual)

@title{Tubers}

@section{Problem}

You say ‘‘potato.’’

I say ‘‘potato.’’

@section{Solution}

Call the whole thing off.

invokes the decode layer, producing a module that is roughly equiv-
alent to the following (where a part is a generic section):

#lang scheme/base
(require scribble/struct)
(provide doc)

(define doc
(make-part (list "Tubers")
(list
(make-part (list "Problem")
(list
(make-paragraph
(list "You say \u201Cpotato.\u201D"))
(make-paragraph
(list "I say \u201Cpotato.\u201D"))))

(make-part (list "Solution")
(list
(make-paragraph
(list "Call the whole thing off.")))))))

5. Document Modules
Like all PLT Scheme programs, Scribble documents are organized
into modules, each in its own file. A #lang line starts a mod-
ule, and most PLT Scheme modules start with #lang scheme
or #lang scheme/base. A Scribble document normally starts
with #lang scribble/doc to use a prose-oriented notation
with @ syntax, but a Scribble document can be written in any nota-
tion and using any helper functions and syntax, as long as it exports

a doc binding whose value is an instance of the Scribble part
structure type. For example,

#lang scheme
(require scribble/decode)
(define doc (decode ’("Hello, world!")))
(provide doc)

implements in Scheme notation a Scribble document that contains
only the text “Hello, world!”

Larger documents are typically split across modules/files along
section boundaries. Subsections are incorporated into a larger sec-
tion using the include-section form, which expands to a re-
quire to import the sub-section module and an expression that
produces the doc part exported by the module. Since document
inclusion corresponds to module importing, all of the usual PLT
Scheme tools for building and executing modules apply to Scribble
documents.

When a large document source is split into multiple modules,
most of the modules need the same basic typesetting functions as
well as the same “standard” bindings for examples. In Scribble,
both sets of bindings can be packaged together; since for-label
declarations build on the module system’s import mechanisms,
they work with the module system’s re-exporting mechanisms.
For example, the documentation for a library that builds on the
scheme/base library might use this "common.ss" library:

#lang scheme/base
(require scribble/manual

(for-label lang/htdp-beginner))
(provide (all-from-out scribble/manual)

(for-label
(all-from-out lang/htdp-beginner)))

Then, each part of the document can be implemented as

#lang scribble/doc
@(require "common.ss")
....

instead of separately requiring scribble/manual and (for-
label lang/htdp-beginner) in every file.

6. Modules and Bindings
As an embedded domain-specific language, Scribble follows a long
tradition of using Lisp- and Scheme-style macros to implement
little languages. In particular, Scribble relies heavily on the Scheme
notion of syntax objects (Sperber 2007), which are fragments of
code that have lexical-binding information attached. Besides using
syntax objects in the usual way to implement macros, Scribble
uses syntax objects to carry lexical information all the way through
document rendering. For example, @scheme[lambda] expands
to roughly (typeset-id #’lambda), where #’lambda is
similar to ’lambda but produces a syntax object (with its lexical
information intact) instead of a symbol.

At the same time, many details of Scribble’s implementation
rely on PLT Scheme extensions to Scheme macros. Continuing the
above example, the typeset-id function applies PLT Scheme’s
identifier-label-binding function to the given syn-
tax object to determine the source module of its binding. The
typeset-id function can then construct a cross-reference key
based on the identifier and the source module; the documentation
for the binding pairs the same identifier and source module to de-
fine the target of the cross-reference.

A deeper dependence of Scribble on PLT Scheme relates to
#lang parsing. The #lang notation organizes reader extensions
of Scheme (i.e., changes to the way that raw text is converted to S-

expressions) to allow new forms of surface syntax. The identifier
after #lang in the original source act as the “language” of a
module.

To parse a #lang line, the identifier after #lang is used as the
name of a library collection that contains a "lang/reader.ss"
module. The collection’s "lang/reader.ss" module must ex-
port a read-syntax function, which takes an input stream and
produces a syntax object. The "lang/reader.ss" module for
scribble/doc parses the given input stream in @-notation text
mode, and then wraps the result in a module form. For example,

#lang scribble/doc
@(require scribble/manual)
It was a @bold{dark} and @italic{stormy} night.

in a file named "hello.scrbl" reads as

(module hello scribble/doclang
doc ()
"\n" (require scribble/manual) "\n"
"It was a " (bold "dark") " and "
(italic "stormy") "night." "\n")

where doc is inserted by the scribble/doc reader as the iden-
tifier to export from the module, and the () is a convenience ex-
plained below.

The module form is PLT Scheme’s core module form, and it
generalizes the standard library form (Sperber 2007) to give
macros more control in transforming the body of a module. Within
a module, the first identifier is the relative name of the module,
and the second identifier indicates a module to supply initial bind-
ings for the module body. In particular, the initial import of a mod-
ule is responsible for supplying a #%module-begin macro that
is implicitly applied to the entire content of the module.

In the case of scribble/doclang, the #%module-begin
macro lifts out all import and definitions forms in the body, passes
all remaining content to the decode function, and binds the result
to an exported doc identifier. Thus, macro expansion converts the
hello module to the following:

(module hello scheme/base
(require scribble/doclang

scribble/manual)
(provide doc)
(define doc

(decode
"\n" "\n"
"It was a " (bold "dark") " and "
(italic "stormy") "night." "\n")))

A subtlety in the process of lifting out import and definition
forms is that they might not appear directly, but instead appear
in the process of macro expansion. For example, include-
section expands to a require of the included document plus
a reference to the document. The #%module-begin macro of
scribble/doclang therefore relies on a PLT Scheme facility
for forcing the expansion of sub-forms. Specifically, #%module-
begin uses local-expand to expand each sub-form just far
enough to determine whether it is an import form, definition form,
or expression. If the sub-form is an import or definition, then
#%module-begin suspends further work and lifts out the import
or definition immediately; the import or definition can then supply
bindings for further expansion of the module body. The need to
suspend and continue lifting explains the () inserted in the body
of a module by the scribble/doc reader; #%module-begin
uses that position to track the sub-forms that have been expanded
already to expressions.

Aside from (1) the ability to force the expansion of nested forms
and (2) the ability of macros to expand into new imports, macro ex-
pansion of a module body is essentially the same as for libraries in
the current Scheme standard (Sperber 2007). Where the standard
allows choice in the separation of phases, we have chosen maximal
separation in PLT Scheme, so that compilation and expansion as
consistent as possible (Flatt 2002). That is, bindings and module
instantiations needed during the compilation of a module are kept
separate from the bindings and instantiations needed when execut-
ing a module for rendering.

Furthermore, to support the connection between documentation
and library bindings, PLT Scheme introduces a new phase that is
orthogonal to compile time or run time: the label phase level. As
noted in Section 3, a for-label import introduces bindings for
documentation without triggering the execution of the imported
module. In PLT Scheme, the same identifier can have different
bindings in different phases. For example, when documenting the
Intermediate Scheme pedagogical language, a document author
would like uses of lambda to link to the lambda specification
for Intermediate Scheme, while procedures used to implement the
document itself will more likely use the full PLT Scheme language,
which is a different lambda. The two different uses of lambda
are kept straight naturally and automatically by separate bindings
in separate phases.

7. Core Scribble Datatypes
The doc binding that a Scribble module exports is a description of
a document. Various tools, such as the scribble command-line
program, can take this description of a document and render it to
a specific format, such as LATEX or HTML. In particular, Scribble
defers detailed typesetting work to LATEX or to HTML browsers,
and Scribble’s plug-in architecture accommodates new rendering
back-ends.

Scribble’s documentation abstraction reflects a least-common
denominator among such document formats. For example, Scrib-
ble has a baked-in notion of itemization, since LATEX, HTML, and
other document formats provide specific support to typeset item-
izations. For many other layout tasks, such as formatting Scheme
code, Scribble documents fall back to a generic “table” abstraction.
Similarly, Scribble itself resolves most forms of cross-references
and document dependencies, since different formats provide differ-
ent levels of automatic support; tables of contents and indexes are
mostly built within Scribble, instead of the back-end.

A Scribble document is a program that generates an instance of
a part structure type. A part can represent a section or a book,
and it can have sub-parts that represent sub-sections or chapters.
This paper, for example, is generated by a Scribble document
whose resulting part represents the whole paper, and it contains
sub-parts for individual sections. The part produced by a Scheme
document for a reference manual is rendered as a book, where the
immediate sub-parts are chapters.

Figure 2 summarizes the structure of a document under part
in a UML-like diagram. When a field contains a list, the diagram
shows a double arrow, and when a field contains a lists of lists, the
diagram shows a triple arrow. The dashed arrows call attention to
delayed fields, which are explained below.

Each part has a flow that is typeset before its sub-parts (if
any), and that represents the main content of a section. A flow is a
list of blocks, where each block is one of the following:

• a paragraph, which contains a list of elements that are type-
set inline with automatic line breaks;

• a table, which contains a list of rows, where each row is a list
of flows, one per cell in the table;

part

title
flow
subparts

flow

blocks

block

paragraph

style
elements itemization

style
items

delayed-block

block

blockquote

style
flow

table

style
cells

element

style

collect-element

elements

string delayed-element

elements

target-element

tag
elements

link-element

tag
elements

Figure 2: Scribble’s core document representation

• an itemization, which contains a list of flows, one per item;
• a blockquote, which contains a single flow that is typically

typeset with more indentation than its surrounding flow; or
• a delayed-block, which eventually expands to another

block, using information gathered elsewhere in the document.
Accordingly, the block field of a delayed-block is not
just a block, but a function that computes a block when given
that other information. For example, a delayed-block is
used to implement a table of contents.

A Scribble document can construct other kinds of blocks that
are implemented in terms of the above built-in kinds. For example,
a defproc block that describes a procedure is implemented in
terms of a table.

An element within a paragraph can be one of the following:

• a plain string;
• an instance of the element structure type, which wraps a list

of elements with a typesetting style, such as ’bold, whose
detailed interpretation depends on the back-end format;

• a target-element, which associates a cross-reference tag
with a list of elements, and where the typeset elements are the
target for cross-references using the tag;

• a link-element, which associates a cross-reference tag to a
list of elements, where the tag designates a cross-reference from

the elements to elsewhere in the document (which is rendered
in HTML as a hyperlink from the elements);

• a delayed-element eventually expands to a list of ele-
ments. Like a delayed-block, it typically generates the
elements using information gathered from elsewhere in the
document. A delayed-element often generates a link-
element after a suitable target for cross-referencing is lo-
cated.

• A collect-element is the complement of delayed-
element: it includes an immediate list of elements, but also a
procedure to record information that might be used elsewhere
in the document. A collect-element often includes a
target-element, in which case its procedure might regis-
ter the target’s cross-reference tag for discovery by delayed-
element instances.

• A few other element types support more specialized tasks, such
as communicating between phases and specifying tooltips.

A document as represented by a part instance is an immutable
value. This value is transformed in several passes to eliminate
delayed-block instances, delayed-element instances,
and collect-element instances. The result is a simplified
part instance and associated cross-reference information. Once
the cross-reference information has been computed, it is saved for
use when building other documents that have cross-references to
this one. Finally, the part instance is consumed by a rendering
back-end to produce the final document.

In the current implementation of Scribble, all documents are
transformed in only two passes: a collect pass that collects infor-
mation about the document (e.g., through collect-elements),
and a resolve pass that turns delayed blocks and elements into nor-
mal elements. We could easily generalize to multiple passes, but
so far, two passes have been sufficient within a single document.
When multiple documents that refer to each other are built sepa-
rately, these passes are iterated as explained in Section 9.

In some cases, the output of Scribble needs customization that
is specific to a back-end. Users of Scribble provide the customiza-
tion information by supplying a mapping from the contents of the
style field in the various structures for the style’s back-end ren-
dering. For HTML output, a CSS fragment can extend or override
the default Scribble style sheet. For LATEX output, a ".tex" file
can extend or redefine the default Scribble LATEX commands.

8. Scribble’s Extensibility
Scribble’s foundation on PLT Scheme empowers programmers to
implement a number of features as libraries that ordinarily must be
built into a documentation tool. More importantly, users can exper-
iment with new and more interesting ways to write documentation
without having to modify Scribble’s implementation.

In this section, we describe several libraries that we have al-
ready built atop Scribble: for stand-alone API documentation, for
automatically running examples when building documentation, for
combining code with documentation in the style of JavaDoc, and
for literate programing.

8.1 API Specification
Targets for code hyperlinks are defined by defproc (for func-
tions), defform (for syntactic forms), defstruct (for structure
types), defclass (for classes in the object system), and other
such forms—one for each form of binding. When a library defines
a new form of binding, an associated documentation library can
define a new form for documenting the bindings.

As we demonstrated in Section 3, the defproc form docu-
ments a function given its name, information about its arguments,

and a contract expression for its result. Information for each argu-
ment includes a contract expression, the keyword (if any) for the
argument, and the default value (if any). For example, a louder
function that consumes and produces a string might be documented
as follows:

@defproc[(louder [str string?]) string?]{
Adds ‘‘!’’ to the end of @scheme[str].
}

The description of the function refers back to the formal argument
str using scheme. In the typeset result, the reference to str
is typeset in a slanted font both in the function prototype and
description.

(louder str) → string?
str : string?

Adds “!” to the end of str.

As usual, lexical scope provides the connection between the
formal-argument str and the reference. The defproc form ex-
pands to a combination of Scribble functions to construct a table
representing the documentation and Scheme local-macro bindings
to control the expansion and typesetting of the procedure descrip-
tion.

For the above defproc, the for-label binding of louder
partly determines the library binding that is documented by this
defproc form. A single binding, however, can be re-exported by
many modules. On the reference side, the scheme and scheme-
block forms follow re-export chains to discover the first exporting
module for which a binding is documented; on the definition side,
defproc needs a declaration of the module that is being docu-
mented. The module declaration is no extra burden on the document
author, because the reader of the document needs some indication
of which module is being documented.

The defmodule form both generates the user-readable expla-
nation of the module being documented and declares that all defi-
nitions within the enclosing section (and sub-sections, unless over-
ridden) correspond to exports from the declared module. Thus, if
louder is exported by the comics/string library, it is docu-
mented as follows:

#lang scribble/doc
@(require scribble/manual

(for-label scheme/base
comics/string))

@title{String Manipulations}

@defmodule[comics/string]

@defproc[(louder [str string?]) string?]{
Adds ‘‘!’’ to the end of @scheme[str].
}

The defproc form is implemented by a scribble/manual
layer of Scribble, which provides many functions and forms for
typesetting PLT Scheme documentation. The scribble/manual
layer is separate from the core Scribble engine, however, and other
libraries can build up defproc-like abstractions on top of the
core typesetting and cross-referencing capabilities described in
Section 7.

8.2 Examples and Tests
In the documentation for a function or syntactic form, concrete
examples help a reader understand how a function works, but only
if the examples are reliable. Ensuring that examples are correct is
a significant burden in a conventional approach to documentation,
because the example expressions must be carefully checked against
the implementation (often by manual cut and paste), and a small
edit can easily introduce a bug.

The examples form of the scribble/eval library type-
sets an example along with its result using the style of a read-eval-
print loop. For example,

@examples[(/ 1 2) (/ 1 2.0) (/ 1 +inf.0)]

produces the output

Examples:
> (/ 1 2)
1/2
> (/ 1 2.0)
0.5
> (/ 1 +inf.0)
0.0

Since building the documentation runs the examples every time,
the typeset results are reliable. When an author makes a mistake, or
when an implementation changes so that the documentation is out
of sync, the example remains correct—though it may not reflect
what the author intended. For example, if we misspell +inf.0 in
the example, then the output is still accurate, though unhelpful in
describing the behavior of division:

Example:
> (/ 1 +infinity.0)
reference to undefined identifier: +infinity.0

To guard against such mistakes, an example expression can be
wrapped with eval:check to combine it with an expected result:

@examples[(eval:check (/ 1 +infinity.0) 0.0)]

Instead of typesetting an error message, this checked example will
raise an exception when the document is built, because the expres-
sion does not produce the expected result 0.0. In this way, docu-
mentation source can serve partly as a test suite.

Evaluation of example code mingles two phases that we have
otherwise worked to keep separate: the time at which a library is
executed, and the time at which its documentation is produced. For
simple functional expressions, such as (/ 1 2), the separation
does not matter, and examples could simply duplicate its argu-
ment in both an expression position and a typeset position. More
generally, however, examples involve temporary definitions and
side-effects. To prevent examples from interfering with each other
while building a large document, examples uses a sandboxed en-
vironment, for which PLT Scheme provides extensive support (Flatt
et al. 1999; Flatt and PLT Scheme 2009, §13).

8.3 In-Code Documentation
For some libraries, the programmer may want to write documenta-
tion with the source instead of in a separate document. To support
such documentation, we have created a Scheme/Scribble extension
that is used to document some libraries in the PLT Scheme distri-
bution.

Using this extension, the comics/string module could be
implemented as follows:

#lang at-exp scheme/base
(require scheme/contract

scribble/srcdoc)
(require/doc scheme/base

scribble/manual)

(define (louder s)
(string-append s "!"))

(provide/doc
[louder
([str string?] . -> . string?)
@{Adds ‘‘!’’ to the end of @scheme[str].}])

The #lang at-exp scheme/base line declares that the
module uses scheme/base language extended with @-notation.
The imported scribble/srcdoc library binds require/doc
and provide/doc. The require/doc form imports bindings
into a “documentation” phase, such as the scheme form that is
used in the description of louder. The provide/doc form ex-
ports louder, annotates it with a contract for run-time check-
ing, and records the contract and description for inclusion in doc-
umentation. The description is an expression in the documentation
phase; it is dropped by normal compilation of the module, but com-
bined with the require/doc imports and inferred (require
(for-label ...)) imports to generate the module’s docu-
mentation.

The documentation part of this module is extracted using
include-extracted, which is provided by the scrib-
ble/extractmodule in cooperation with scribble/srcdoc.
The extracted documentation might provide the entire text of the
document directly, or it might be incorporated into a larger docu-
ment:

#lang scribble/doc
@(require scribble/manual

scribble/extract
(for-label comics/string))

@title{Strings}

@defmodule[comics/string]

The @schememodname[comics/string] library
provides functions for creating punchlines.

@include-extracted[comics/string]

An advantage of using scribble/srcdoc and scrib-
ble/extract is that the description of the function is with the
implementation, and the function contract need not be duplicated
in the source and documentation. Similarly, the fact that string?
in the contract gets its binding from scheme/base is specified
once in the code and inferred for the documentation. At the same
time, a phase separation prevents document-generating expressions
from polluting the library’s run-time execution, and vice versa.

8.4 Literate Programming
The techniques used for in-source documentation extend to the
creation of WEB-like literate programming tools. Figure 3 shows
an example use of our literate-programming library; the left-hand
side shows a screenshot of DrScheme editing the source code for a
short, literate discussion of the Collatz conjecture, while the right-
hand side shows the rendered output.

Literate programs written with our library look like ordinary
Scribble documents, except that they start with #lang scrib-

ble/lp and use chunk to introduce a piece of the implementa-
tion. A use of chunk consists of a name followed by definitions
and/or expressions:

@chunk[<name-of-chunk>
... definitions ...
... expressions ...]

The definitions and expressions in a chunk can refer to other chunks
by their names.

Unlike a normal Scribble program, running a scribble/lp
program ignores the prose exposition and instead evaluates the pro-
gram in the chunks. In literate programming terminology, this pro-
cess is called tangling the program. Thus, to a client module, a lit-
erate program behaves just like its illiterate variant. The compiled
form of a literate program does not contain any of the documenta-
tion, nor does it depend on the runtime support for Scribble, just
as if an extra-linguistic tangler had been used. Consequently, the
literate implementation suffers no overhead due to the prose.

To recover the prose, the

@lp-include[filename]

form extracts a literate view of the program from filename. In
literate programming terminology, this process is called weaving
the program. The right-hand side of Figure 3 shows the woven
version of the code in the screenshot.

Both weaving and tangling with scribble/lp work at the
level of syntactic extensions, and not in terms of manipulating
source text. As a result, the language for writing prose is extensible,
because Scribble libraries such as scribble/manual can be
imported into the document. The language for implementing the
program is also obviously extensible, because a chunk can include
imports from other PLT Scheme libraries. Finally, even the bridge
between the prose and the implementation is extensible, because
the document author can create new syntactic forms that expand to
a mixture of prose, implementation, and uses of chunk.

Tangling via syntactic extension also enables many tools for
Scheme programs to automatically apply to literate Scheme pro-
grams. The arrows in Figure 3’s screenshot demonstrate how
DrScheme can draw arrows from chunk bindings to chunk refer-
ences, and from the binding occurrence of an identifier to its bound
occurrences, even across chunks. These latter arrows are particu-
larly helpful with literate programs, where lexical scope is some-
times obscured by the way that textually disparate fragments of a
program are eventually tangled into the same scope. DrScheme’s
interactive REPL, test-case coverage support, module browser, ex-
ecutable generation, and other tools also work on literate programs.

To gain some experience with non-trivial literate program-
ming in Scribble, we have written a 34-page literate program
that describes our implementation of the Chat Noir game, which
is distributed with PLT Scheme. The source is included in the
distribution as "chat-noir-literate.ss", and the ren-
dered output is in the help system and online at http://docs.
plt-scheme.org/games/chat-noir.html.

9. Building and Installing Documentation
PLT Scheme documentation resides with the source code. The
setup process that builds bytecode from Scheme source also renders
HTML documentation from Scribble source. The HTML output is
accompanied by cross-reference information that is used both for
building more documentation when new libraries are installed and
for online help in the programming environment.

Although many existing PLT Scheme tools help in building doc-
uments, the process of generating HTML is significantly different
from compilation tasks. The main difference is that cyclic depen-

Consider a function that, starting from
(collatz n), recurs with

<even> ::=

(collatz (/ n 2))

if n is even and recurs with

<odd> ::=

(collatz (+ (* 3 n) 1))

if n is odd.

We can package that up into the collatz
function:

<collatz> ::=

(define (collatz n)
(unless (= n 1)

(if (even? n)
<even>
<odd>)))

The Collatz conjecture is true if this func-
tion terminates for every input.

Thanks to the flexibility of literate pro-
gramming, we can package up the code to
compute orbits of Collatz numbers too:

<collatz-sequence> ::=

(define (collatz n)
(cond

[(= n 1)
’(1)]

[(even? n)
(cons n <even>)]

[(odd? n)
(cons n <odd>)]))

Finally, we put the whole thing together,
after establishing different scopes for the
two functions.

<*> ::=

(require scheme/local)
(local [<collatz-sequence>]
(collatz 18))

(local [<collatz>]
(collatz 18))

Figure 3: Literate programming example

dencies are common in documentation, whereas library dependen-
cies are strictly layered. For example, the core language reference
contains many pointers into the overview and a few pointers to the
GUI library and other extensions; all documents, meanwhile, refer
back to the core reference. Resolving mutual dependencies directly
would require loading all documents into memory at once, which
is impractical for the scale of the PLT Scheme documentation. The
setup processes therefore builds documents one at a time, reading
and writing serialized cross-reference information until it arrives at
a fixed point for all documents. A fixed point usually requires two
iterations, so that all documents see the information collected from
all other documents. A handful of documents require a third pass,
because they contain section titles from other documents, where
each section title is based on still other documents (e.g., by using an
identifier whose typesetting depends on whether it is documented
as a procedure or syntactic form).

Another challenge in building a unified set of documentation is
that individual users might augment the main installation with user-
specific libraries. The main installation includes a table of contents
that is the default starting point for reading documentation, and
this table is updated when a new package is placed into the main
installation. When a user-specific library is installed, in contrast,
its document is built so that hyperlink references go into the main
installation’s documentation, and a user-specific table of contents
is created. When a user opens the documentation via DrScheme’s
Help menu, a user-specific table of contents is opened (if it exists).

Instead of explicitly installing a library, a user can implicitly
install a package from the PLaneT repository (Matthews 2006) by
using a library reference of the form (planet). When a
library is installed in this way, its documentation is installed as the
library is compiled. PLaneT supports library versioning, and mul-
tiple versions of a package can be installed at a time. In that case,
multiple versions of the documentation are installed; document ref-
erences work with versions just as reliably as library references,
since they use the same underlying module-import mechanisms to
precisely identify the origin of a binding.

10. Experience
Scribble is part of the PLT Scheme distribution as of version 4.0,
which was released in June 2008, and all PLT Scheme documen-
tation is created with Scribble. Developing Scribble, porting old
PLT Scheme documentation, and writing new documentation took
about a year, but the @ notation evolved earlier through years of
experimentation.

The documentation at http://docs.plt-scheme.org/
is built nightly by Scribble from a snapshot of the PLT Scheme
source repository. The same documentation is available in PDF
form at http://pre.plt-scheme.org/docs/pdf/. At
the time of this writing, the 70 PDF files of current documentation
total 3778 pages in a relatively sparse format, which we estimate
would fit in around 1000 pages if compressed into a conference-
style, two-column layout. This total includes documentation only
for libraries that are bundled with PLT Scheme; additional libraries
for download via PLaneT are also documented using Scribble.

PLT Scheme documentation was previously written in LATEX
and converted to HTML via tex2page (Sitaram 2007). Although
tex2page was a dramatic improvement over our original use of
latex2html, the build process relied on layers of fragile LATEX
macros, HTML hacks, and pre- and post-processing scripts, which
made the documentation all but impossible to build except by its
authors. Consequently, most library documentation used a plain-
text format that was easier to write but inconsistent in style and
difficult to index. The documentation index distinguished identifier
names from general terms, but it did not attach a source module to
each identifier name, so online help relied on textual search.

The Scribble-based documentation system is accessible to all
PLT Scheme users, who write their own documentation using
Scribble and often supply patches to the main document sources.
Scribble produces output that is more consistent and easier to nav-
igate than the old documentation, and the resulting documentation
works better with online help. More importantly, the smooth path
from API documentation to stand-alone documents has let us pro-
duce much more tutorial and overview documentation, helping
users find their way through the volumes of available information.

11. Related Work
As noted in the introduction, most existing documentation tools fall
into one of three categories: LATEX-like tools, JavaDoc-like tools,
and WEB-like tools.

The LATEX category includes general word-processing tools like
Microsoft Word, but LATEX offers the crucial advantage of pro-
grammability, where macros enable automatic formatting of API
details. Systems like Skribe (Gallesio and Serrano 2005) improve
LATEX by offering a sane programming language. Even in a pro-
grammable documentation language, however, a lack of connection
to source code means that information is duplicated in documenta-
tion and source, and binding and evaluation rules inherent to the
source language are not automatically reflected in documentation
and in examples related to those bindings.

The JavaDoc category includes perldoc for Perl, RDoc for Ruby,
Haddock (Marlow 2002) for Haskell, OCamlDoc (Leroy 2007),
Doxygen (van Heesch 2007) for various languages (including Java,
C++, C#, and Fortran), and many others. Such tools improve on
the LATEX category, in that they provide a closer connection to the
programs that they document. In particular, they are specifically
designed for library API documentation, where they shine in auto-
matic extraction of API details from the source code. These tools
are not suitable for other kinds of stand-alone documents, such as
overview documents, tutorials, and papers (like this one), where
prose and document structuring are more central than API details.

Literate programming tools such as WEB (Knuth 1984) and
noweb (Ramsey 1994) are designed for documenting the imple-
mentation of a library as much as the API that a library exports.
In a sense, these tools are an extreme version of the JavaDoc cat-
egory, where the information communicated to a reader is drawn
from both the prose and the executable source. In doing so, unfor-
tunately, the tools typically revert to a textual slice-and-dice of the
program and prose sources, instead of a programmable layer that
spans the two halves.

Simonis and Weiss (2003) provide a more complete overview of
existing systems and add ProgDoc, which is similar to noweb in
the way that it uses a pipeline of tools. Scribble builds on many
ideas from these predecessors, but fits them into an extensible
framework backed by an expressive programming language.

Skribe (categorized above in the LATEX group) is by far the
system most closely related to Scribble. Like Scribble, Skribe
builds on Scheme to construct representations of documents using
Scheme functions and macros, and it uses an extension of Scheme
syntax to make it more suitable for working with literal text. (Skribe
uses square brackets to quote strings, and within square brack-
ets, a comma followed by an open parenthesis escapes back into
Scheme.) Skribe’s format-independent document structure and its
use of passes to render a document influenced the design of Scrib-
ble. Skribe, however, lacks an integration with lexical binding and
the module system that is the heart of Scribble. For example, a
scheme form that typesets and links and identifier in a lexically
sensitive way is not possible to implement in Skribe without build-
ing a PLT Scheme-style module and macro layer on top of Skribe.

Scribble builds on a long line of work in Lisp-style language
extensibility, including traditional Lisp macros, lexically scoped

macros in Scheme (Dybvig et al. 1993), and readtable-based
syntactic extension as in Common Lisp. Phase-sensitive binding
through for-label is specific to PLT Scheme, as is the disci-
plined approach to reader extension embodied by #lang.

The SLATEX (Sitaram 2007) system provides automatic for-
matting of Scheme code within a LATEX document. To identify
syntactic forms and constants, SLATEX relies on defkeyword
and defconstant declarations. In this mode, the author of a
work in progress must constantly add another “standard” bind-
ing to SLATEX’s list; SLATEX’s built-in table of syntactic forms is
small compared to the number of syntactic forms available in PLT
Scheme. More generally, the problem is the usual one for “stan-
dards”: there are many to choose from. Scribble solves this problem
with for-label imports and by directly using the namespace-
management functionality of PLT Scheme modules.

Many systems follow the Lisp tradition of docstrings, in which
documentation is associated to run-time values and used for online
help. Python supports docstrings, and its doctest module even
extracts and executes examples as tests, analogous to Scribble’s
examples form. Scribble supports a docstring-like connection
between run-time bindings and documentation, but using lexical-
binding information instead of the value associated with a bind-
ing. For example, (help cons) in PLT Scheme’s read-eval-print
loop opens documentation for cons based on its binding as im-
ported from scheme/base, and not based on the procedure ob-
tained by evaluating cons.

Smalltalk programming environments (Kay 1993) have always
encouraged programmers to use the source (with its comments)
as documentation, and environments like Eclipse and Visual Stu-
dio now make code navigation similarly convenient for other lan-
guages. Such tools do not supplant the need for external documen-
tation, however, such as guides and tutorials.

In terms of surface syntax, many documentation systems build
on either S-expression notation (or its cousin XML) as a way to en-
code both document structure and program structure. Such repre-
sentations are especially appropriate for an intermediate representa-
tion of documentation, as in DocBook (Walsh and Muellner 2008).
S-expression encodings of documentation are especially common
in Lisp projects, where data and code are mingled easily.

12. Conclusion
A documentation language should be designed not by piling
escape conventions on top of a comment syntax, but by re-
moving the weaknesses and restrictions of the programming
language that make a separate documentation language ap-
pear necessary. Scribble demonstrates that a small number
of rules for forming documentation, with no restrictions on
how they are composed, suffice to form a practical and effi-
cient documentation language that is flexible enough to sup-
port the major documentation paradigms in use today.

— Clinger’s introduction to the RnRS standards,
adapted for Scribble

Our design for Scribble relies on a thread of language-extension
work that starts in Lisp macros, runs through Scheme’s introduction
of lexically scoped syntax, and continues with PLT Scheme inno-
vations on modules, phases, and an open syntax expander. Mean-
while, LATEX and Skribe demonstrate the advantages of building
a document system on top of a programming language, and tools
like JavaDoc demonstrate the power of leveraging the information
available in a program’s source to automate and link documentation
about the program.

Scribble combines all of these threads for the first time, pro-
ducing a tool (or library, or language, depending on how you look
at it) that spans and integrates document categories. We are aware

of no programming system besides PLT Scheme that is distributed
with tutorials, programmer guides, and detailed API documenta-
tion, all extensively and precisely cross-referenced. We also know
of no other system that makes it so easy for third parties to add new
documentation of all kinds with the same level of integration, to say
nothing of being able to extend the documentation system itself.

Trying Scribble
To install an HTML version of this paper where Scheme and Scrib-
ble identifiers are hyperlinked to their documentation, first install
PLT Scheme 4.1.5 or later from http://plt-scheme.org/.
Then, start DrScheme, enter the program

#lang scheme
(require (planet mflatt/scribble-paper))

and click Run. Running the program installs the paper and di-
rects your default browser to the starting page. To view the
document source, click Check Syntax and then right-click on
mflatt/scribble-paper to open its source.

Acknowledgements: We would like to thank Matthias Felleisen
and the anonymous reviewers for helpful feedback on this paper.
This work is supported in part by the NSF.

Bibliography
R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic Abstraction

in Scheme. Lisp and Symbolic Computation 5(4), pp. 295–326, 1993.

Matthew Flatt. Compilable and Composable Macros, You Want it When?
In Proc. ACM Intl. Conf. Functional Programming, pp. 72–83, 2002.

Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias
Felleisen. Programming Languages as Operating Systems (or Revenge
of the Son of the Lisp Machine). In Proc. ACM Intl. Conf. Functional
Programming, pp. 138–147, 1999.

Matthew Flatt, and PLT Scheme. Reference: PLT Scheme. PLT Scheme
Inc., PLT-TR2009-reference-v4.2, 2009.

Erick Gallesio, and Manuel Serrano. Skribe: a Functional Authoring Lan-
guage. J. Functional Programming 15(5), pp. 751–770, 2005.

Alan C. Kay. The early history of Smalltalk. ACM SIGPLAN Notices 28(3),
1993.

Donald E. Knuth. Literate Programming. Computer Journal 27(2), pp. 97–
111, 1984.

Xavier Leroy. The Objective Caml System, release 3.10. 2007.

Simon Marlow. Haddock, a Haskell Documentation Tool. In Proc. ACM
Wksp. Haskell, pp. 78–89, 2002.

Jacob Matthews. Component Deployment with PLaneT: You Want it
Where? In Proc. Wksp. Scheme and Functional Programming, 2006.

Norman Ramsey. Literate Programming Simplified. IEEE Software 11(5),
pp. 97–105, 1994.

Volker Simonis, and Roland Weiss. ProgDOC — A New Program Docu-
mentation System. In Proc. Perspectives of System Informatics, Lecture
Notes in Computer Science volume 2890, pp. 438–449, 2003.

Dorai Sitaram. TeX2page. 2007. http://www.ccs.neu.edu/home/
dorai/tex2page/tex2page-doc.html

Dorai Sitaram. How to Use SLaTeX. 2007. http://www.ccs.neu.
edu/home/dorai/slatex/

Michael Sperber (Ed.). The Revised 6 Report on the Algorithmic Language
Scheme. 2007.

Norman Walsh, and Leonard Muellner. DocBook: The Definitive Guide.
O’Reilly & Associates, Inc., 2008.

Dimitri van Heesch. Doxygen Source Code Documentation Generator Tool.
2007. http://www.stack.nl/˜dimitri/doxygen/

